Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4058, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37429883

ABSTRACT

Quantum algorithms for simulating electronic ground states are slower than popular classical mean-field algorithms such as Hartree-Fock and density functional theory but offer higher accuracy. Accordingly, quantum computers have been predominantly regarded as competitors to only the most accurate and costly classical methods for treating electron correlation. However, here we tighten bounds showing that certain first-quantized quantum algorithms enable exact time evolution of electronic systems with exponentially less space and polynomially fewer operations in basis set size than conventional real-time time-dependent Hartree-Fock and density functional theory. Although the need to sample observables in the quantum algorithm reduces the speedup, we show that one can estimate all elements of the k-particle reduced density matrix with a number of samples scaling only polylogarithmically in basis set size. We also introduce a more efficient quantum algorithm for first-quantized mean-field state preparation that is likely cheaper than the cost of time evolution. We conclude that quantum speedup is most pronounced for finite-temperature simulations and suggest several practically important electron dynamics problems with potential quantum advantage.

2.
Phys Rev Lett ; 129(24): 240501, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36563264

ABSTRACT

Many quantum algorithms involve the evaluation of expectation values. Optimal strategies for estimating a single expectation value are known, requiring a number of state preparations that scales with the target error ϵ as O(1/ϵ). In this Letter, we address the task of estimating the expectation values of M different observables, each to within additive error ϵ, with the same 1/ϵ dependence. We describe an approach that leverages Gilyén et al.'s quantum gradient estimation algorithm to achieve O(sqrt[M]/ϵ) scaling up to logarithmic factors, regardless of the commutation properties of the M observables. We prove that this scaling is worst-case optimal in the high-precision regime if the state preparation is treated as a black box, even when the operators are mutually commuting. We highlight the flexibility of our approach by presenting several generalizations, including a strategy for accelerating the estimation of a collection of dynamic correlation functions.

3.
Nature ; 603(7901): 416-420, 2022 03.
Article in English | MEDLINE | ID: mdl-35296841

ABSTRACT

Interacting many-electron problems pose some of the greatest computational challenges in science, with essential applications across many fields. The solutions to these problems will offer accurate predictions of chemical reactivity and kinetics, and other properties of quantum systems1-4. Fermionic quantum Monte Carlo (QMC) methods5,6, which use a statistical sampling of the ground state, are among the most powerful approaches to these problems. Controlling the fermionic sign problem with constraints ensures the efficiency of QMC at the expense of potentially significant biases owing to the limited flexibility of classical computation. Here we propose an approach that combines constrained QMC with quantum computation to reduce such biases. We implement our scheme experimentally using up to 16 qubits to unbias constrained QMC calculations performed on chemical systems with as many as 120 orbitals. These experiments represent the largest chemistry simulations performed with the help of quantum computers, while achieving accuracy that is competitive with state-of-the-art classical methods without burdensome error mitigation. Compared with the popular variational quantum eigensolver7,8, our hybrid quantum-classical computational model offers an alternative path towards achieving a practical quantum advantage for the electronic structure problem without demanding exceedingly accurate preparation and measurement of the ground-state wavefunction.

4.
Nature ; 601(7894): 531-536, 2022 01.
Article in English | MEDLINE | ID: mdl-34847568

ABSTRACT

Quantum many-body systems display rich phase structure in their low-temperature equilibrium states1. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases2-8 that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC)7,9-15. Concretely, dynamical phases can be defined in periodically driven many-body-localized (MBL) systems via the concept of eigenstate order7,16,17. In eigenstate-ordered MBL phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, or from regimes in which the dynamics of a few select states can mask typical behaviour. Here we implement tunable controlled-phase (CPHASE) gates on an array of superconducting qubits to experimentally observe an MBL-DTC and demonstrate its characteristic spatiotemporal response for generic initial states7,9,10. Our work employs a time-reversal protocol to quantify the impact of external decoherence, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. Furthermore, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to studying non-equilibrium phases of matter on quantum processors.


Subject(s)
Cold Temperature , Phase Transition , Thermodynamics
5.
J Chem Phys ; 155(15): 150901, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34686056

ABSTRACT

With the rapid development of quantum technology, one of the leading applications that has been identified is the simulation of chemistry. Interestingly, even before full scale quantum computers are available, quantum computer science has exhibited a remarkable string of results that directly impact what is possible in a chemical simulation with any computer. Some of these results even impact our understanding of chemistry in the real world. In this Perspective, we take the position that direct chemical simulation is best understood as a digital experiment. While on the one hand, this clarifies the power of quantum computers to extend our reach, it also shows us the limitations of taking such an approach too directly. Leveraging results that quantum computers cannot outpace the physical world, we build to the controversial stance that some chemical problems are best viewed as problems for which no algorithm can deliver their solution, in general, known in computer science as undecidable problems. This has implications for the predictive power of thermodynamic models and topics such as the ergodic hypothesis. However, we argue that this Perspective is not defeatist but rather helps shed light on the success of existing chemical models such as transition state theory, molecular orbital theory, and thermodynamics as models that benefit from data. We contextualize recent results, showing that data-augmented models are a more powerful rote simulation. These results help us appreciate the success of traditional chemical theory and anticipate new models learned from experimental data. Not only can quantum computers provide data for such models, but they can also extend the class and power of models that utilize data in fundamental ways. These discussions culminate in speculation on new ways for quantum computing and chemistry to interact and our perspective on the eventual roles of quantum computers in the future of chemistry.

6.
Science ; 374(6574): 1479-1483, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34709938

ABSTRACT

Interactions in quantum systems can spread initially localized quantum information into the exponentially many degrees of freedom of the entire system. Understanding this process, known as quantum scrambling, is key to resolving several open questions in physics. Here, by measuring the time-dependent evolution and fluctuation of out-of-time-order correlators, we experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor. We engineer quantum circuits that distinguish operator spreading and operator entanglement and experimentally observe their respective signatures. We show that whereas operator spreading is captured by an efficient classical model, operator entanglement in idealized circuits requires exponentially scaled computational resources to simulate. These results open the path to studying complex and practically relevant physical observables with near-term quantum processors.

7.
J Chem Theory Comput ; 15(1): 311-324, 2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30485748

ABSTRACT

We introduce a unitary coupled-cluster (UCC) ansatz termed k-UpCCGSD that is based on a family of sparse generalized doubles operators, which provides an affordable and systematically improvable unitary coupled-cluster wave function suitable for implementation on a near-term quantum computer. k-UpCCGSD employs k products of the exponential of pair coupled-cluster double excitation operators (pCCD), together with generalized single excitation operators. We compare its performance in both efficiency of implementation and accuracy with that of the generalized UCC ansatz employing the full generalized single and double excitation operators (UCCGSD), as well as with the standard ansatz employing only single and double excitations (UCCSD). k-UpCCGSD is found to show the best scaling for quantum computing applications, requiring a circuit depth of [Formula: see text], compared with [Formula: see text] for UCCGSD, and [Formula: see text] for UCCSD, where N is the number of spin orbitals and η is the number of electrons. We analyzed the accuracy of these three ansätze by making classical benchmark calculations on the ground state and the first excited state of H4 (STO-3G, 6-31G), H2O (STO-3G), and N2 (STO-3G), making additional comparisons to conventional coupled cluster methods. The results for ground states show that k-UpCCGSD offers a good trade-off between accuracy and cost, achieving chemical accuracy for lower cost of implementation on quantum computers than both UCCGSD and UCCSD. UCCGSD is also found to be more accurate than UCCSD but at a greater cost for implementation. Excited states are calculated with an orthogonally constrained variational quantum eigensolver approach. This is seen to generally yield less accurate energies than for the corresponding ground states. We demonstrate that using a specialized multideterminantal reference state constructed from classical linear response calculations allows these excited state energetics to be improved.

SELECTION OF CITATIONS
SEARCH DETAIL
...