Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020182

ABSTRACT

Groundwater is the most ubiquitous source of liquid freshwater globally, yet its role in supporting diverse ecosystems is rarely acknowledged1,2. However, the location and extent of groundwater-dependent ecosystems (GDEs) are unknown in many geographies, and protection measures are lacking1,3. Here, we map GDEs at high-resolution (roughly 30 m) and find them present on more than one-third of global drylands analysed, including important global biodiversity hotspots4. GDEs are more extensive and contiguous in landscapes dominated by pastoralism with lower rates of groundwater depletion, suggesting that many GDEs are likely to have already been lost due to water and land use practices. Nevertheless, 53% of GDEs exist within regions showing declining groundwater trends, which highlights the urgent need to protect GDEs from the threat of groundwater depletion. However, we found that only 21% of GDEs exist on protected lands or in jurisdictions with sustainable groundwater management policies, invoking a call to action to protect these vital ecosystems. Furthermore, we examine the linkage of GDEs with cultural and socio-economic factors in the Greater Sahel region, where GDEs play an essential role in supporting biodiversity and rural livelihoods, to explore other means for protection of GDEs in politically unstable regions. Our GDE map provides critical information for prioritizing and developing policies and protection mechanisms across various local, regional or international scales to safeguard these important ecosystems and the societies dependent on them.

2.
Ground Water ; 61(4): 463-478, 2023.
Article in English | MEDLINE | ID: mdl-36928631

ABSTRACT

Groundwater resources are connected with social, economic, ecological, and Earth systems. We introduce the framing of groundwater-connected systems to better represent the nature and complexity of these connections in data collection, scientific investigations, governance and management approaches, and groundwater education. Groundwater-connected systems are social, economic, ecological, and Earth systems that interact with groundwater, such as irrigated agriculture, groundwater-dependent ecosystems, and cultural relationships to groundwater expressions such as springs and rivers. Groundwater-connected systems form social-ecological systems with complex behaviors such as feedbacks, nonlinear processes, multiple stable system states, and path dependency. These complex behaviors are only visible through this integrated system framing and are not endogenous properties of physical groundwater systems. The framing is syncretic as it aims to provide a common conceptual foundation for the growing disciplines of socio-hydrogeology, eco-hydrogeology, groundwater governance, and hydro-social groundwater analysis. The framing also facilitates greater alignment between the groundwater sustainability discourse and emerging sustainability concepts and principles. Aligning with these concepts and principles presents groundwater sustainability as more than a physical state to be reached; and argues that place-based and multifaceted goals, values, justice, knowledge systems, governance, and management must continually be integrated to maintain groundwater's social, ecological, and Earth system functions. The groundwater-connected systems framing can underpin a broad, methodologically pluralistic, and community-driven new wave of data collection and analysis, research, governance, management, and education. These developments, together, can invigorate efforts to foster sustainable groundwater futures in the complex systems groundwater is embedded within.


Subject(s)
Ecosystem , Groundwater , Conservation of Natural Resources , Rivers , Agriculture
3.
Nat Commun ; 13(1): 439, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35064140

ABSTRACT

Humans and ecosystems are deeply connected to, and through, the hydrological cycle. However, impacts of hydrological change on social and ecological systems are infrequently evaluated together at the global scale. Here, we focus on the potential for social and ecological impacts from freshwater stress and storage loss. We find basins with existing freshwater stress are drying (losing storage) disproportionately, exacerbating the challenges facing the water stressed versus non-stressed basins of the world. We map the global gradient in social-ecological vulnerability to freshwater stress and storage loss and identify hotspot basins for prioritization (n = 168). These most-vulnerable basins encompass over 1.5 billion people, 17% of global food crop production, 13% of global gross domestic product, and hundreds of significant wetlands. There are thus substantial social and ecological benefits to reducing vulnerability in hotspot basins, which can be achieved through hydro-diplomacy, social adaptive capacity building, and integrated water resources management practices.

SELECTION OF CITATIONS
SEARCH DETAIL
...