Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Biomedicines ; 12(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38927507

ABSTRACT

It is generally assumed that all estrogen-receptor-positive (ER+) breast cancers proliferate in response to estrogen and, therefore, examples of the estrogen-induced regression of ER+ cancers are paradoxical. This review re-examines the estrogen regression paradox for the Luminal A subtype of ER+ breast cancers. The proliferative response to estrogen is shown to depend on the level of ER. Mechanistically, a window of opportunity study of pre-operative estradiol suggested that with higher levels of ER, estradiol could activate the DREAM-MMB (Dimerization partner, Retinoblastoma-like proteins, E2F4, and MuvB-MYB-MuvB) pathway to decrease proliferation. The response of breast epithelium and the incidence of breast cancers during hormonal variations that occur during the menstrual cycle and at the menopausal transition, respectively, suggest that a single hormone, either estrogen, progesterone or androgen, could activate the DREAM pathway, leading to reversible cell cycle arrest. Conversely, the presence of two hormones could switch the DREAM-MMB complex to a pro-proliferative pathway. Using publicly available data, we examine the gene expression changes after aromatase inhibitors and ICI 182,780 to provide support for the hypothesis. This review suggests that it might be possible to integrate all current hormonal therapies for Luminal A tumors within a single theoretical schema.

2.
Heliyon ; 8(1): e08666, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35028452

ABSTRACT

Estrogen is thought to cause proliferation of all estrogen receptor positive (ER+) breast cancers. Paradoxically, in the Women's Health Initiative Trial, estrogen-only hormone replacement therapy reduced the incidence and mortality of low grade, ER+, HER2- breast cancer. We gave estradiol to 19 post-menopausal women with newly diagnosed low-grade, ER+, HER2- breast cancer in a prospective window of opportunity clinical trial and examined the changes in proliferation and gene expression before and after estradiol treatment. Ki67 decreased in 13/19 (68%) patients and 8/13 (62%) showed a decrease in Risk of Recurrence Score. We chose three prototypical estrogen responders (greatest decrease in ROR) and non-responders (no/minimal change in ROR) and applied a differential gene expression analysis to develop pre-treatment (PRESTO-30core) and post-treatment (PRESTO-45surg) gene expression profiles. The PRESTO-30core predicted adjuvant benefit in a published series of tamoxifen, the partial estrogen agonist. Of the 45 genes in the PRESTO-45surg, thirty contain the Cell cycle genes Homology Region (CHR) motif that binds the class B multi-vulva complex (MuvB) a member of the DREAM (Dimerization partner, retinoblastoma-like proteins, E2F, MuvB) complex responsible for reversible cell cycle arrest or quiescence. There was also near uniform suppression (89%) of the remaining DREAM genes consistent with estrogen induced activation of the DREAM complex to mediate cell cycle block after a short course of estrogens. To our knowledge, this is the first report to show estrogen modulation of DREAM genes and suggest involvement of DREAM pathway associated quiescence in endocrine responsive post-menopausal ER+ breast cancers.

3.
Cancer Treat Res Commun ; 28: 100401, 2021.
Article in English | MEDLINE | ID: mdl-34091374

ABSTRACT

INTRODUCTION: Patients with hormone receptor (HR)-positive, human epidermal growth factor receptor-2 (HER2)-negative, node negative (NN) breast cancer may be offered a gene expression profiling (GEP) test to determine recurrence risk and benefit of adjuvant chemotherapy. We developed a clinical-pathologic (CP) model to predict genomic recurrence risk and examined its performance characteristics. METHODS: Patients diagnosed with HR-positive, HER2-negative, NN breast cancer with a tumour size < 30 mm and who underwent a GEP test [OncotypeDX or Prosigna] in Alberta from October 2017 through March 2019 were identified. Patients were classified as low or high genomic risk. Multivariable logistic regression analysis was performed to examine the associations of CP factors with genomic risk. A CP model was developed using coefficients of regression and sensitivity analyses were performed. RESULTS: A total of 366 patients were eligible (135 were tested using OncotypeDX and 231 with Prosigna). Of these, 64 (17.5%) patients were classified as high genomic risk. On multivariable logistic regression, tumour size > 20 mm (odds ratio [OR], 3.58; 95% confidence interval [CI], 1.84-6.98; P<0.001), low expression of progesterone receptor (OR, 3.46; 95% CI, 1.76-6.82; P<0.001), and histological grade III (OR, 7.24; 95% CI, 3.82-13.70; P<0.001) predicted high genomic risk. A CP model using these variables was developed to provide a score of 0-4. A CP cut-point of 0, identified 56% of genomic low risk patients with a specificity of 98.4%. CONCLUSIONS: A CP model could be used to narrow the population of breast cancer patients undergoing GEP testing.


Subject(s)
Breast Neoplasms/genetics , Models, Biological , Neoplasm Recurrence, Local/genetics , Adult , Aged , Breast Neoplasms/pathology , Female , Gene Expression Profiling , Genomics , Humans , Middle Aged , Neoplasm Grading , Receptor, ErbB-2/genetics , Receptors, Progesterone/genetics , Risk , Sentinel Lymph Node Biopsy , Tumor Burden
4.
Cell Death Dis ; 11(6): 448, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32528057

ABSTRACT

Apoptosis is fundamental to normal animal development and is the target for many anticancer therapies. Recent studies have explored the consequences of "failed apoptosis" where the apoptotic program is initiated but does not go to completion and does not cause cell death. Nevertheless, this failed apoptosis induces DNA double-strand breaks generating mutations that facilitate tumorigenesis. Whether failed apoptosis is relevant to clinical disease is unknown. BCL-2 interacting killer (BIK) is a stress-induced BH3-only protein that stimulates apoptosis in response to hormone and growth factor deprivation, hypoxia, and genomic stress. It was unclear whether BIK promotes or suppresses tumor survival within the context of breast cancer. We investigated this and show that BIK induces failed apoptosis with limited caspase activation and genomic damage in the absence of extensive cell death. Surviving cells acquire aggressive phenotypes characterized by enrichment of cancer stem-like cells, increased motility and increased clonogenic survival. Furthermore, by examining six independent cohorts of patients (total n = 969), we discovered that high BIK mRNA and protein levels predicted clinical relapse of Estrogen receptor (ER)-positive cancers, which account for almost 70% of all breast cancers diagnosed but had no predictive value for hormone receptor-negative (triple-negative) patients. Thus, this study identifies BIK as a biomarker for tumor recurrence of ER-positive patients and provides a potential mechanism whereby failed apoptosis contributes to cancer aggression.


Subject(s)
Breast Neoplasms/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism , Apoptosis , Breast Neoplasms/mortality , Female , Humans , Phenotype , Prognosis , Survival Analysis
5.
Histopathology ; 75(2): 225-235, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31017314

ABSTRACT

AIMS: The nuclear proliferation marker Ki67 assayed by immunohistochemistry has multiple potential uses in breast cancer, but an unacceptable level of interlaboratory variability has hampered its clinical utility. The International Ki67 in Breast Cancer Working Group has undertaken a systematic programme to determine whether Ki67 measurement can be analytically validated and standardised among laboratories. This study addresses whether acceptable scoring reproducibility can be achieved on excision whole sections. METHODS AND RESULTS: Adjacent sections from 30 primary ER+ breast cancers were centrally stained for Ki67 and sections were circulated among 23 pathologists in 12 countries. All pathologists scored Ki67 by two methods: (i) global: four fields of 100 tumour cells each were selected to reflect observed heterogeneity in nuclear staining; (ii) hot-spot: the field with highest apparent Ki67 index was selected and up to 500 cells scored. The intraclass correlation coefficient (ICC) for the global method [confidence interval (CI) = 0.87; 95% CI = 0.799-0.93] marginally met the prespecified success criterion (lower 95% CI ≥ 0.8), while the ICC for the hot-spot method (0.83; 95% CI = 0.74-0.90) did not. Visually, interobserver concordance in location of selected hot-spots varies between cases. The median times for scoring were 9 and 6 min for global and hot-spot methods, respectively. CONCLUSIONS: The global scoring method demonstrates adequate reproducibility to warrant next steps towards evaluation for technical and clinical validity in appropriate cohorts of cases. The time taken for scoring by either method is practical using counting software we are making publicly available. Establishment of external quality assessment schemes is likely to improve the reproducibility between laboratories further.


Subject(s)
Biomarkers, Tumor/analysis , Breast Neoplasms , Immunohistochemistry/standards , Ki-67 Antigen/analysis , Pathology, Clinical/standards , Female , Humans , Observer Variation , Reproducibility of Results
6.
IEEE Trans Med Imaging ; 38(11): 2632-2641, 2019 11.
Article in English | MEDLINE | ID: mdl-30908206

ABSTRACT

Automated cell detection and localization from microscopy images are significant tasks in biomedical research and clinical practice. In this paper, we design a new cell detection and localization algorithm that combines deep convolutional neural network (CNN) and compressed sensing (CS) or sparse coding (SC) for end-to-end training. We also derive, for the first time, a backpropagation rule, which is applicable to train any algorithm that implements a sparse code recovery layer. The key innovation behind our algorithm is that the cell detection task is structured as a point object detection task in computer vision, where the cell centers (i.e., point objects) occupy only a tiny fraction of the total number of pixels in an image. Thus, we can apply compressed sensing (or equivalently SC) to compactly represent a variable number of cells in a projected space. Subsequently, CNN regresses this compressed vector from the input microscopy image. The SC/CS recovery algorithm ( L 1 optimization) can then recover sparse cell locations from the output of CNN. We train this entire processing pipeline end-to-end and demonstrate that end-to-end training improves accuracy over a training paradigm that treats CNN and CS-recovery layers separately. We have validated our algorithm on five benchmark datasets with excellent results.


Subject(s)
Cytological Techniques/methods , Image Processing, Computer-Assisted/methods , Microscopy/methods , Neural Networks, Computer , Algorithms , Databases, Factual , Humans , Mitosis
7.
Mod Pathol ; 32(1): 59-69, 2019 01.
Article in English | MEDLINE | ID: mdl-30143750

ABSTRACT

The nuclear proliferation biomarker Ki67 has potential prognostic, predictive, and monitoring roles in breast cancer. Unacceptable between-laboratory variability has limited its clinical value. The International Ki67 in Breast Cancer Working Group investigated whether Ki67 immunohistochemistry can be analytically validated and standardized across laboratories using automated machine-based scoring. Sets of pre-stained core-cut biopsy sections of 30 breast tumors were circulated to 14 laboratories for scanning and automated assessment of the average and maximum percentage of tumor cells positive for Ki67. Seven unique scanners and 10 software platforms were involved in this study. Pre-specified analyses included evaluation of reproducibility between all laboratories (primary) as well as among those using scanners from a single vendor (secondary). The primary reproducibility metric was intraclass correlation coefficient between laboratories, with success considered to be intraclass correlation coefficient >0.80. Intraclass correlation coefficient for automated average scores across 16 operators was 0.83 (95% credible interval: 0.73-0.91) and intraclass correlation coefficient for maximum scores across 10 operators was 0.63 (95% credible interval: 0.44-0.80). For the laboratories using scanners from a single vendor (8 score sets), intraclass correlation coefficient for average automated scores was 0.89 (95% credible interval: 0.81-0.96), which was similar to the intraclass correlation coefficient of 0.87 (95% credible interval: 0.81-0.93) achieved using these same slides in a prior visual-reading reproducibility study. Automated machine assessment of average Ki67 has the potential to achieve between-laboratory reproducibility similar to that for a rigorously standardized pathologist-based visual assessment of Ki67. The observed intraclass correlation coefficient was worse for maximum compared to average scoring methods, suggesting that maximum score methods may be suboptimal for consistent measurement of proliferation. Automated average scoring methods show promise for assessment of Ki67 scoring, but requires further standardization and subsequent clinical validation.


Subject(s)
Biomarkers, Tumor/analysis , Breast Neoplasms/pathology , Image Processing, Computer-Assisted/standards , Immunohistochemistry/standards , Ki-67 Antigen/analysis , Female , Humans , Immunohistochemistry/methods , Reproducibility of Results
8.
Acta Biomater ; 66: 294-309, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29183848

ABSTRACT

Triple-negative breast cancer is an aggressive form of breast cancer with few therapeutic options if it recurs after adjuvant chemotherapy. RNA interference could be an alternative therapy for metastatic breast cancer, where small interfering RNA (siRNA) can silence the expression of aberrant genes critical for growth and migration of malignant cells. Here, we formulated a siRNA delivery system using lipid-substituted polyethylenimine (PEI) and hyaluronic acid (HA), and characterized the size, ζ-potential and cellular uptake of the nanoparticulate delivery system. Higher cellular uptake of siRNA by the tailored PEI/HA formulation suggested better interaction of complexes with breast cancer cells due to improved physicochemical characteristics of carrier and HA-binding CD44 receptors. The siRNAs against specific phosphatases that inhibited migration of MDA-MB-231 cells were then identified using library screen against 267 protein-tyrosine phosphatases, and siRNAs to inhibit cell migration were further validated. We then assessed the combinational delivery of a siRNA against CDC20 to decrease cell growth and a siRNA against several phosphatases shown to decrease migration of breast cancer cells. Combinational siRNA therapy against CDC20 and identified phosphatases PPP1R7, PTPN1, PTPN22, LHPP, PPP1R12A and DUPD1 successfully inhibited cell growth and migration, respectively, without interfering the functional effect of the co-delivered siRNA. The identified phosphatases could serve as potential targets to inhibit migration of highly aggressive metastatic breast cancer cells. Combinational siRNA delivery against cell cycle and phosphatases could be a promising strategy to inhibit both growth and migration of metastatic breast cancer cells, and potentially other types of metastatic cancer. STATEMENT OF SIGNIFICANCE: The manuscript investigated the efficacy of a tailored polymeric siRNA delivery system formulation as well as combinational siRNA therapy in metastatic breast cancer cells to inhibit malignant cell growth and migration. The siRNA delivery was undertaken by non-viral means with PEI/HA. We identified six phosphatases that could be critical targets to inhibit migration of highly aggressive metastatic breast cancer cells. We further report on specifically targeting cell cycle and phosphatase proteins to decrease both malignant cell growth and migration simultaneously. Clinical gene therapy against metastatic breast cancer with effective and safe delivery systems is urgently needed to realize the potential of molecular medicine in this deadly disease and our studies in this manuscript is intended to facilitate this endeavor.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Movement , Combinatorial Chemistry Techniques , Hyaluronic Acid/chemistry , Phosphoprotein Phosphatases/metabolism , RNA, Small Interfering/administration & dosage , Surface-Active Agents/chemistry , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Gene Silencing , Humans , Hyaluronan Receptors/metabolism , Linoleic Acid/chemistry , Particle Size , Polyethyleneimine/chemistry , Reproducibility of Results , Static Electricity , Triple Negative Breast Neoplasms/metabolism
9.
Cureus ; 9(6): e1380, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28775920

ABSTRACT

We describe a case of aggressive adenomyoepithelioma (AME) of the breast with a lymph node metastasis. A 63-year-old female presented with a fluctuating breast mass and clinically palpable lymph nodes. The patient underwent excisional biopsy followed by mastectomy with lymph node dissection and adjuvant radiotherapy (RT). Clinical behavior of both benign and malignant AME is described with the review of the literature and treatment recommendations.

10.
Appl Immunohistochem Mol Morphol ; 25(10): 687-695, 2017.
Article in English | MEDLINE | ID: mdl-27093453

ABSTRACT

There is a pressing need for an objective decision tool to guide therapy for breast cancer patients that are estrogen receptor positive and HER2/neu negative. This subset of patients contains a mixture of luminal A and B tumors with good and bad outcomes, respectively. The 2 main current tools are on the basis of immunohistochemistry (IHC) or gene expression, both of which rely on the expression of distinct molecular groups that reflect hormone receptors, HER2/neu status, and most importantly, proliferation. Despite the success of a proprietary molecular test, definitive superiority of any method has not yet been demonstrated. Ki67 IHC scoring assessments have been shown to be poorly reproducible, whereas molecular testing is costly with a longer turnaround time. This work proposes an objective Ki67 index using image analysis that addresses the existing methodological issues of Ki67 quantitation using IHC on paraffin-embedded tissue. Intrinsic bias related to numerical assessment performed on IHC is discussed as well as the sampling issue related to the "peel effect" of tiny objects within a thin section. A new nonbiased stereological parameter (VV) based on the Cavalieri method is suggested for use on a double-stained Ki67/cytokeratin IHC slide. The assessment is performed with open-source ImageJ software with interobserver concordance between 3 pathologists being high at 93.5%. Furthermore, VV was found to be a superior method to predict an outcome in a small subset of breast cancer patients when compared with other image analysis methods being used to determine the Ki67 labeling index. Calibration methodology is also discussed to further this IHC approach.


Subject(s)
Biological Assay/methods , Breast Neoplasms/diagnosis , ErbB Receptors/metabolism , Ki-67 Antigen/metabolism , Affinity Labels/chemistry , Breast Neoplasms/pathology , Female , Humans , Immunohistochemistry , Middle Aged , Patient Outcome Assessment , Receptors, Estrogen/metabolism , Reproducibility of Results
11.
Mol Pharm ; 13(12): 4116-4128, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27802596

ABSTRACT

Cancer cells are known to be heterogeneous and plastic, which imparts innate and acquired abilities to resist molecular targeting by short interfering RNA (siRNA). Not all cancer cells in a population would show a similar responsiveness to targeting of genes critical for their survival and even the responders could quickly transform and switch to alternative mechanism(s) for their survival. This study was designed to look at this phenomenon by analyzing the effect of siRNA silencing of selected protein mRNAs involved in cell survival and proliferation on other protein mRNAs that could contribute to cell survival. We compared the gene expression profile of the initial population after siRNA silencing to the subpopulation that survived the siRNA silencing, to identify potential overexpressions that might explain the cell survival. Our studies show that silencing well-selected protein mRNAs simultaneously could offer advantages compared to individual siRNA silencing due to an additional impact on the expression level of certain protein mRNAs. We also demonstrate that overexpression of certain protein mRNAs could explain the innate unresponsiveness of a subpopulation of cells. These observations could be a stepping stone for further investigation of the possibility of significant synergistic effect for this combinational RNA interference strategy.


Subject(s)
Biomarkers, Tumor/antagonists & inhibitors , Breast Neoplasms/drug therapy , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/genetics , RNA, Small Interfering/administration & dosage , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Survival/drug effects , Female , Humans , Molecular Targeted Therapy , RNA, Small Interfering/genetics , Transcriptome , Tumor Cells, Cultured
12.
J Biomed Mater Res A ; 104(12): 3031-3044, 2016 12.
Article in English | MEDLINE | ID: mdl-27465922

ABSTRACT

Conventional breast cancer therapies have significant limitations that warrant a search for alternative therapies. Short-interfering RNA (siRNA), delivered by polymeric biomaterials and capable of silencing specific genes critical for growth of cancer cells, holds great promise as an effective, and more specific therapy. Here, we employed amphiphilic polymers and silenced the expression of two cell cycle proteins, TTK and CDC20, and the anti-apoptosis protein survivin to determine the efficacy of polymer-mediated siRNA treatment in breast cancer cells as well as side effects in nonmalignant cells in vitro. We first identified effective siRNA carriers by screening a library of lipid-substituted polyethylenimines (PEI), and PEI substituted with linoleic acid (LA) emerged as the most effective carrier for selected siRNAs. Combinations of TTK/CDC20 and CDC20/Survivin siRNAs decreased the growth of MDA-MB-231 cells significantly, while only TTK/CDC20 combination inhibited MCF7 cell growth. The effects of combinational siRNA therapy was higher when complexes were formulated at lower siRNA:polymer ratio (1:2) compared to higher ratio (1:8) in nonmalignant cells. The lead polymer (1.2PEI-LA6) showed differential transfection efficiency based on the cell-type transfected. We conclude that the lipid-substituted polymers could serve as a viable platform for delivery of multiple siRNAs against critical targets in breast cancer therapy. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3031-3044, 2016.


Subject(s)
Gene Transfer Techniques , Lipids/chemistry , Polyethyleneimine/chemistry , RNA, Small Interfering/administration & dosage , RNAi Therapeutics , Triple Negative Breast Neoplasms/therapy , Cdc20 Proteins/genetics , Cell Cycle Proteins/genetics , Cell Line , Cell Line, Tumor , Female , Humans , Inhibitor of Apoptosis Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Survivin , Triple Negative Breast Neoplasms/genetics
13.
Oncotarget ; 7(22): 33272-85, 2016 May 31.
Article in English | MEDLINE | ID: mdl-27120789

ABSTRACT

Breast cancer is the leading cause of cancer-associated deaths in women worldwide. Clinical biomarkers give information on disease progression and identify relevant biological pathways. A confounding factor that uncouples markers from disease outcome is the ability of tumor cells to mutate and evade clinical intervention. Therefore, we focussed on apoptotic genes that modulate tumor regression. Using gene and tissue microarray analyses, we identified an association of Bcl-2 interacting killer (Bik) with poor breast cancer prognosis. Bik prognostic ability was independent of Estrogen Receptor/Progesterone Receptor and Her2 status. Additionally, Bik was independent of anti-apoptotic Bcl-2, Bcl-xL, Mcl-1 and Bcl-w suggesting a complex mechanism of tumor promotion identified by Bik high tumors. Bik also stimulates autophagy, which can contribute to enhanced tumor fitness. We found a significant association between the autophagy marker ATG5 and Bik. Combined high expression level of ATG5 and Bik was a stronger predictor of outcome than either alone. Thus, our study identifies Bik as a novel, independent prognostic biomarker for poor outcomes in breast cancer and suggests that Bik-mediated autophagy contributes to disease recurrence.


Subject(s)
Apoptosis Regulatory Proteins/analysis , Apoptosis , Biomarkers, Tumor/analysis , Breast Neoplasms/chemistry , Membrane Proteins/analysis , Apoptosis Regulatory Proteins/genetics , Autophagy , Autophagy-Related Protein 5/analysis , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Disease Progression , Disease-Free Survival , Female , Gene Expression Profiling/methods , Humans , Kaplan-Meier Estimate , Membrane Proteins/genetics , Middle Aged , Mitochondrial Proteins , Neoplasm Recurrence, Local , Oligonucleotide Array Sequence Analysis , Proportional Hazards Models , Risk Factors , Time Factors , Tissue Array Analysis , Treatment Outcome , Up-Regulation
14.
NPJ Breast Cancer ; 2: 16014, 2016.
Article in English | MEDLINE | ID: mdl-28721378

ABSTRACT

Pathological analysis of the nuclear proliferation biomarker Ki67 has multiple potential roles in breast and other cancers. However, clinical utility of the immunohistochemical (IHC) assay for Ki67 immunohistochemistry has been hampered by unacceptable between-laboratory analytical variability. The International Ki67 Working Group has conducted a series of studies aiming to decrease this variability and improve the evaluation of Ki67. This study tries to assess whether acceptable performance can be achieved on prestained core-cut biopsies using a standardized scoring method. Sections from 30 primary ER+ breast cancer core biopsies were centrally stained for Ki67 and circulated among 22 laboratories in 11 countries. Each laboratory scored Ki67 using three methods: (1) global (4 fields of 100 cells each); (2) weighted global (same as global but weighted by estimated percentages of total area); and (3) hot-spot (single field of 500 cells). The intraclass correlation coefficient (ICC), a measure of interlaboratory agreement, for the unweighted global method (0.87; 95% credible interval (CI): 0.81-0.93) met the prespecified success criterion for scoring reproducibility, whereas that for the weighted global (0.87; 95% CI: 0.7999-0.93) and hot-spot methods (0.84; 95% CI: 0.77-0.92) marginally failed to do so. The unweighted global assessment of Ki67 IHC analysis on core biopsies met the prespecified criterion of success for scoring reproducibility. A few cases still showed large scoring discrepancies. Establishment of external quality assessment schemes is likely to improve the agreement between laboratories further. Additional evaluations are needed to assess staining variability and clinical validity in appropriate cohorts of samples.

15.
Article in English | MEDLINE | ID: mdl-25763370

ABSTRACT

The cell cycle proteins are key regulators of cell cycle progression whose deregulation is one of the causes of breast cancer. RNA interference (RNAi) is an endogenous mechanism to regulate gene expression and it could serve as the basis of regulating aberrant proteins including cell cycle proteins. Since the delivery of small interfering RNA (siRNA) is a main barrier for implementation of RNAi therapy, we explored the potential of a non-viral delivery system, 2.0 kDa polyethylenimines substituted with linoleic acid and caprylic acid, for this purpose. Using a library of siRNAs against cell cycle proteins, we identified cell division cycle protein 20 (CDC20), a recombinase RAD51, and serine-threonine protein kinase CHEK1 as effective targets for breast cancer therapy, and demonstrated their therapeutic potential in breast cancer MDA-MB-435, MDA-MB-231, and MCF7 cells with respect to another well-studied cell cycle protein, kinesin spindle protein. We also explored the efficacy of dicer-substrate siRNA (DsiRNA) against CDC20, RAD51, and CHEK1, where a particular DsiRNA against CDC20 showed an exceptionally high inhibition of cell growth in vitro. There was no apparent effect of silencing selected cell cycle proteins on the potency of the chemotherapy drug doxorubicin. The efficacy of DsiRNA against CDC20 was subsequently assessed in a xenograft model, which indicated a reduced tumor growth as a result of CDC20 DsiRNA therapy. The presented study highlighted specific cell cycle protein targets critical for breast cancer therapy, and provided a polymeric delivery system for their effective down-regulation.

16.
Clin Exp Metastasis ; 32(4): 393-403, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25759211

ABSTRACT

Breast cancer is the most common cancer in women with the leading cause of death being metastasis, the spread of cancer to distant organs. For those patients with high-risk estrogen receptor positive (ER+) breast cancer, an increased expression of the glycoprotein MUC1 is associated with resistance to anti-hormonal therapy, metastasis and death. Tumor cells may use MUC1 to metastasize by exploiting the vascular adhesion pathways used by leukocytes during the inflammatory response. MUC1 is a type 1 transmembrane protein whose cytoplasmic tail acts as a scaffold for several signaling pathways including the non-receptor kinase Src, a signaling molecule involved in cell differentiation, proliferation, adhesion and motility. This review will highlight our current knowledge of how MUC1/ICAM-1 binding can lead to the recruitment and activation of Src and propose a novel role for lipid raft microdomains in this promigratory signaling. Improved understanding of the mechanism of metastases and the underlying signaling cascade is a prerequisite to the discovery of therapeutic targets to prevent metastasis and death in ER+ breast cancer patients.


Subject(s)
Breast Neoplasms/pathology , Intercellular Adhesion Molecule-1/metabolism , Membrane Microdomains/metabolism , Mucin-1/metabolism , src-Family Kinases/metabolism , Amino Acid Sequence , Cell Movement , Female , Humans , Molecular Sequence Data , Neoplasm Metastasis/pathology , Protein Binding , Receptors, Estrogen/metabolism , Signal Transduction
17.
Mod Pathol ; 28(6): 778-86, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25698062

ABSTRACT

Although an important biomarker in breast cancer, Ki67 lacks scoring standardization, which has limited its clinical use. Our previous study found variability when laboratories used their own scoring methods on centrally stained tissue microarray slides. In this current study, 16 laboratories from eight countries calibrated to a specific Ki67 scoring method and then scored 50 centrally MIB-1 stained tissue microarray cases. Simple instructions prescribed scoring pattern and staining thresholds for determination of the percentage of stained tumor cells. To calibrate, laboratories scored 18 'training' and 'test' web-based images. Software tracked object selection and scoring. Success for the calibration was prespecified as Root Mean Square Error of scores compared with reference <0.6 and Maximum Absolute Deviation from reference <1.0 (log2-transformed data). Prespecified success criteria for tissue microarray scoring required intraclass correlation significantly >0.70 but aiming for observed intraclass correlation ≥0.90. Laboratory performance showed non-significant but promising trends of improvement through the calibration exercise (mean Root Mean Square Error decreased from 0.6 to 0.4, Maximum Absolute Deviation from 1.6 to 0.9; paired t-test: P=0.07 for Root Mean Square Error, 0.06 for Maximum Absolute Deviation). For tissue microarray scoring, the intraclass correlation estimate was 0.94 (95% credible interval: 0.90-0.97), markedly and significantly >0.70, the prespecified minimum target for success. Some discrepancies persisted, including around clinically relevant cutoffs. After calibrating to a common scoring method via a web-based tool, laboratories can achieve high inter-laboratory reproducibility in Ki67 scoring on centrally stained tissue microarray slides. Although these data are potentially encouraging, suggesting that it may be possible to standardize scoring of Ki67 among pathology laboratories, clinically important discrepancies persist. Before this biomarker could be recommended for clinical use, future research will need to extend this approach to biopsies and whole sections, account for staining variability, and link to outcomes.


Subject(s)
Biomarkers, Tumor/analysis , Breast Neoplasms/pathology , Immunohistochemistry/standards , Ki-67 Antigen/analysis , Tissue Array Analysis/standards , Female , Humans
18.
J Natl Cancer Inst ; 105(24): 1897-906, 2013 Dec 18.
Article in English | MEDLINE | ID: mdl-24203987

ABSTRACT

BACKGROUND: In breast cancer, immunohistochemical assessment of proliferation using the marker Ki67 has potential use in both research and clinical management. However, lack of consistency across laboratories has limited Ki67's value. A working group was assembled to devise a strategy to harmonize Ki67 analysis and increase scoring concordance. Toward that goal, we conducted a Ki67 reproducibility study. METHODS: Eight laboratories received 100 breast cancer cases arranged into 1-mm core tissue microarrays-one set stained by the participating laboratory and one set stained by the central laboratory, both using antibody MIB-1. Each laboratory scored Ki67 as percentage of positively stained invasive tumor cells using its own method. Six laboratories repeated scoring of 50 locally stained cases on 3 different days. Sources of variation were analyzed using random effects models with log2-transformed measurements. Reproducibility was quantified by intraclass correlation coefficient (ICC), and the approximate two-sided 95% confidence intervals (CIs) for the true intraclass correlation coefficients in these experiments were provided. RESULTS: Intralaboratory reproducibility was high (ICC = 0.94; 95% CI = 0.93 to 0.97). Interlaboratory reproducibility was only moderate (central staining: ICC = 0.71, 95% CI = 0.47 to 0.78; local staining: ICC = 0.59, 95% CI = 0.37 to 0.68). Geometric mean of Ki67 values for each laboratory across the 100 cases ranged 7.1% to 23.9% with central staining and 6.1% to 30.1% with local staining. Factors contributing to interlaboratory discordance included tumor region selection, counting method, and subjective assessment of staining positivity. Formal counting methods gave more consistent results than visual estimation. CONCLUSIONS: Substantial variability in Ki67 scoring was observed among some of the world's most experienced laboratories. Ki67 values and cutoffs for clinical decision-making cannot be transferred between laboratories without standardizing scoring methodology because analytical validity is limited.


Subject(s)
Biomarkers, Tumor/analysis , Breast Neoplasms/immunology , Ki-67 Antigen/analysis , Laboratories/standards , Tissue Array Analysis/standards , Female , Humans , Immunohistochemistry , International Cooperation , Observer Variation , Reproducibility of Results
19.
J Control Release ; 172(1): 219-228, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-23994345

ABSTRACT

Chemotherapy is an effective approach to curb uncontrolled proliferation of malignant cells. However, most drugs rapidly lose their efficacy as a result of resistance development. We explored the potential of combinational siRNA silencing to prevent growth of drug-resistant breast cancer cells independent of chemotherapy. Resistance was induced in two breast cancer lines by chronic exposure to doxorubicin. Microarray analysis of apoptosis-related proteins showed Bcl2, survivin, NF B, and Mcl1 to be prominently up-regulated in drug-resistant cells. Human siRNA libraries against apoptosis-related proteins and kinases were screened using lipid-substituted polymers as non-viral carrier, and siRNAs were selected to diminish cell growth without affecting growth of skin fibroblasts. Surprisingly, the selected siRNAs led to similar responses in wild-type and drug-resistant cells, despite their phenotypic differences. Promising kinase siRNAs were co-delivered with anti-apoptotic Mcl-1 siRNA and Ribosomal Protein S6 Kinase (RPS6KA5) was found the most promising candidate for simultaneous silencing with Mcl-1. In both MDA435 wild type (WT) and MDA435 resistant (R) xenografts in nude mice, double silencing of Mcl-1/RPS6KA5 also led to improved inhibition of tumor growth in the absence of chemotherapy. We conclude that combinational silencing of well-selected targets could be a feasible therapeutic strategy in the absence of drug therapy and could provide a new avenue for therapy of drug-resistant breast cancers.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Doxorubicin/therapeutic use , RNA, Small Interfering/therapeutic use , Animals , Antibiotics, Antineoplastic/pharmacology , Apoptosis , Breast Neoplasms/drug therapy , Cell Line, Tumor , Combined Modality Therapy , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , Myeloid Cell Leukemia Sequence 1 Protein/genetics , RNA, Small Interfering/genetics , Ribosomal Protein S6 Kinases/genetics
20.
Lancet Oncol ; 14(1): 72-80, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23246022

ABSTRACT

BACKGROUND: We compared standard adjuvant anthracycline chemotherapy with anthracycline-taxane combination chemotherapy in women with operable node-positive breast cancer. Here we report the final, 10-year follow-up analysis of disease-free survival, overall survival, and long-term safety. METHODS: BCIRG 001 was an open label, phase 3, multicentre trial in which 1491 patients aged 18-70 years with node-positive, early breast cancer and a Karnofsky score of 80% or more were randomly assigned to adjuvant treatment with docetaxel, doxorubicin, and cyclophosphamide (TAC) or fluorouracil, doxorubicin, and cyclophosphamide (FAC) every 3 weeks for six cycles. Randomisation was stratified according to institution and number of involved axillary lymph nodes per patient (one to three vs four or more). Disease-free survival was the primary endpoint and was defined as the interval between randomisation and breast cancer relapse, second primary cancer, or death, whichever occurred first. Efficacy analyses were based on the intention-to-treat principle. BCIRG 001 is registered with ClinicalTrials.gov, number NCT00688740. FINDINGS: Enrolement took place between June 11, 1997 and June 3, 1999; 745 patients were assigned to receive TAC and 746 patients were assigned to receive FAC. After a median follow-up of 124 months (IQR 90-126), disease-free survival was 62% (95% CI 58-65) for patients in the TAC group and 55% (51-59) for patients in the FAC group (hazard ratio [HR] 0·80, 95% CI 0·68-0·93; log-rank p=0·0043). 10-year overall survival was 76% (95% CI 72-79) for patients in the TAC group and 69% (65-72) for patients in the FAC group (HR 0·74, 0·61-0·90; log-rank p=0·0020). TAC improved disease-free survival relative to FAC irrespective of nodal, hormone receptor, and HER2 status, although not all differences were significant in these subgroup analyses. Grade 3-4 heart failure occurred in 26 (3%) patients in the TAC group and 17 (2%) patients in the FAC group, and caused death in two patients in the TAC group and four patients in the FAC group. A substantial decrease in left ventricular ejection fraction (defined as a relative decrease from baseline of 20% or more) was seen in 58 (17%) patients who received TAC and 41 (15%) patients who received FAC. Six patients who received TAC developed leukaemia or myelodysplasia, as did three patients who received FAC. INTERPRETATION: Our results provide evidence that the initial therapeutic outcomes seen at the 5-year follow-up with a docetaxel-containing adjuvant regimen are maintained at 10 years. However, a substantial percentage of patients had a decrease in left ventricular ejection fraction, probably caused by anthracycline therapy, which warrants further investigation. FUNDING: Sanofi.


Subject(s)
Breast Neoplasms/drug therapy , Cyclophosphamide/administration & dosage , Doxorubicin/administration & dosage , Taxoids/administration & dosage , Adolescent , Adult , Aged , Anthracyclines/administration & dosage , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Chemotherapy, Adjuvant/adverse effects , Chemotherapy, Adjuvant/methods , Cyclophosphamide/adverse effects , Disease-Free Survival , Docetaxel , Doxorubicin/adverse effects , Female , Follow-Up Studies , Humans , Karnofsky Performance Status , Lymphatic Metastasis/pathology , Middle Aged , Neoplasm Staging , Receptor, ErbB-2/metabolism , Taxoids/adverse effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...