Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 514(7524): 597-9, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25337883

ABSTRACT

Magnetic fields in accretion disks play a dominant part during the star formation process but have hitherto been observationally poorly constrained. Field strengths have been inferred on T Tauri stars and possibly in the innermost part of their accretion disks, but the strength and morphology of the field in the bulk of a disk have not been observed. Spatially unresolved measurements of polarized emission (arising from elongated dust grains aligned perpendicularly to the field) imply average fields aligned with the disks. Theoretically, the fields are expected to be largely toroidal, poloidal or a mixture of the two, which imply different mechanisms for transporting angular momentum in the disks of actively accreting young stars such as HL Tau (ref. 11). Here we report resolved measurements of the polarized 1.25-millimetre continuum emission from the disk of HL Tau. The magnetic field on a scale of 80 astronomical units is coincident with the major axis (about 210 astronomical units long) of the disk. From this we conclude that the magnetic field inside the disk at this scale cannot be dominated by a vertical component, though a purely toroidal field also does not fit the data well. The unexpected morphology suggests that the role of the magnetic field in the accretion of a T Tauri star is more complex than our current theoretical understanding.

2.
Science ; 343(6178): 1490-2, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24603151

ABSTRACT

Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets, and dwarf planets, but is gas also released in such events? Observations at submillimeter wavelengths of the archetypal debris disk around ß Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85 astronomical units from the star, in a plane closely aligned with the orbit of the inner planet, ß Pictoris b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet or from the remnants of a collision of Mars-mass planets.

3.
Nature ; 493(7431): 191-4, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23283173

ABSTRACT

The formation of gaseous giant planets is thought to occur in the first few million years after stellar birth. Models predict that the process produces a deep gap in the dust component (shallower in the gas). Infrared observations of the disk around the young star HD 142527 (at a distance of about 140 parsecs from Earth) found an inner disk about 10 astronomical units (AU) in radius (1 AU is the Earth-Sun distance), surrounded by a particularly large gap and a disrupted outer disk beyond 140 AU. This disruption is indicative of a perturbing planetary-mass body at about 90 AU. Radio observations indicate that the bulk mass is molecular and lies in the outer disk, whose continuum emission has a horseshoe morphology. The high stellar accretion rate would deplete the inner disk in less than one year, and to sustain the observed accretion matter must therefore flow from the outer disk and cross the gap. In dynamical models, the putative protoplanets channel outer-disk material into gap-crossing bridges that feed stellar accretion through the inner disk. Here we report observations of diffuse CO gas inside the gap, with denser HCO(+) gas along gap-crossing filaments. The estimated flow rate of the gas is in the range of 7 × 10(-9) to 2 × 10(-7) solar masses per year, which is sufficient to maintain accretion onto the star at the present rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...