Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Rhythms ; 25(4): 235-46, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20679493

ABSTRACT

Daily exercise promotes physical health as well as improvements in mental and neural functions. Studies in intact wild-type (WT) rodents have revealed that the brain's suprachiasmatic nuclei (SCN), site of the main circadian pacemaker, are also responsive to scheduled wheel running. It is unclear, however, if and how animals with a dysfunctional circadian pacemaker respond to exercise. Here, we tested whether scheduled voluntary exercise (SVE) in a running wheel for 6 hours per day could promote neural and behavioral rhythmicity in animals whose circadian competence is compromised through genetically targeted loss of vasoactive intestinal polypeptide (VIP(-/-) mice) or its VPAC(2) receptor (Vipr2(-/-) mice). We report that in constant dark (DD), rhythmic VIP(-/-) and Vipr2(-/-) mice show weak free-running rhythms with a period of <23 hours and all wild-type mice are strongly rhythmic with approximately 23.5-hour periodicity. VIP(-/-) and Vipr2(-/-) mice rapidly (<7 days) synchronize to daily SVE, while WT mice take much longer (>35 days). Following 21 to 50 days of SVE, WT mice show small changes in their rhythms, and most Vipr2(-/-) mice now sustain robust near 24-hour behavioral rhythms, whereas very few VIP(-/-) mice do. This study demonstrates that scheduled daily exercise can markedly improve circadian rhythms in behavioral activity and raises the possibility that this noninvasive approach may be useful as an intervention in clinical etiologies in which there are dysfunctions of circadian time keeping.


Subject(s)
Circadian Rhythm/genetics , Motor Activity/physiology , Receptors, Vasoactive Intestinal Peptide, Type II/deficiency , Vasoactive Intestinal Peptide/deficiency , Animals , Circadian Rhythm/physiology , Darkness , Mice , Proto-Oncogene Proteins c-fos/biosynthesis , Suprachiasmatic Nucleus/physiology
2.
Neuroscience ; 169(4): 1630-9, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20547209

ABSTRACT

The habenula complex is implicated in a range of cognitive, emotional and reproductive behaviors, and recently this epithalamic structure was suggested to be a component of the brain's circadian system. Circadian timekeeping is driven in cells by the cyclical activity of core clock genes and proteins such as per2/PER2. There are currently no reports of rhythmic clock gene/protein expression in the habenula and therefore the question of whether this structure has an intrinsic molecular clock remains unresolved. Here, using videomicroscopy imaging and photon-counting of a PER2::luciferase (LUC) fusion protein together with multiunit electrophysiological recordings, we tested the endogenous circadian properties of the mouse habenula in vitro. We show that a circadian oscillator is localized primarily to the medial portion of the lateral habenula. Rhythms in PER2:: LUC bioluminescence here are visualized in single cells and oscillations continue in the presence of the sodium channel blocker, tetrodotoxin, indicating that individual cells have intrinsic timekeeping properties. Ependymal cells lining the dorsal third ventricle also express circadian oscillations of PER2. These findings establish that neurons and non-neuronal cells in the epithalamus express rhythms in cellular and molecular activities, indicating a role for circadian oscillators in the temporal regulation of habenula controlled processes and behavior.


Subject(s)
Biological Clocks/physiology , Circadian Rhythm/physiology , Epithalamus/physiology , Habenula/physiology , Neurons/physiology , Animals , Biological Clocks/drug effects , Circadian Rhythm/drug effects , Epithalamus/cytology , Habenula/cytology , Male , Mice , Mice, Transgenic , Neurons/cytology , Neurons/drug effects , Organ Culture Techniques
3.
J Biol Rhythms ; 23(3): 211-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18487413

ABSTRACT

Vasoactive intestinal polypeptide and its receptor, VPAC2, play important roles in the functioning of the dominant circadian pacemaker, located in the hypothalamic suprachiasmatic nuclei (SCN). Mice lacking VPAC2 receptors (Vipr2-/-) show altered circadian rhythms and impaired synchronization to environmental lighting cues. However, light can increase phosphoprotein and immediate early gene expression in the Vipr2-/- SCN demonstrating that the circadian clock is readily responsive to light in these mice. It is not clear whether these neurochemical responses to light can be transduced to behavioral changes as seen in wild-type (WT) animals. In this study we investigated the diurnal and circadian wheel-running profile of WT (C57BL/6J) and Vipr2-/- mice under a 12-h light:12-h complete darkness (LD) lighting schedule and in constant darkness (DD) and used 1-h light pulses to shift the activity of mice in DD. Unlike WT mice, Vipr2-/- mice show grossly altered locomotor patterns making the analysis of behavioral responses to light problematic. However, analyses of both the onset and the offset of locomotor activity reveal that in a subset of these mice, light can reset the offset of behavioral rhythms during the subjective night. This suggests that the SCN clock of Vipr2-/- mice and the rhythms it generates are responsive to photic stimulation and that these responses can be integrated to whole animal behavioral changes.


Subject(s)
Behavior, Animal , Light , Receptors, Vasoactive Intestinal Peptide, Type II/physiology , Animals , Female , Locomotion , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Vasoactive Intestinal Peptide, Type II/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...