Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Cell Syst ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38981488

ABSTRACT

Organoids derived from human stem cells are a promising approach for disease modeling, regenerative medicine, and fundamental research. However, organoid variability and limited control over morphological outcomes remain as challenges. One open question is the extent to which engineering control over culture conditions can guide organoids to specific compositions. Here, we extend a DNA "velcro" cell patterning approach, precisely controlling the number and ratio of human induced pluripotent stem cell-derived progenitors contributing to nephron progenitor (NP) organoids and mosaic NP/ureteric bud (UB) tip cell organoids within arrays of microwells. We demonstrate long-term control over organoid size and morphology, decoupled from geometric constraints. We then show emergent trends in organoid tissue proportions that depend on initial progenitor cell composition. These include higher nephron and stromal cell representation in mosaic NP/UB organoids vs. NP-only organoids and a "goldilocks" initial cell ratio in mosaic organoids that optimizes the formation of proximal tubule structures.

2.
Cost Eff Resour Alloc ; 22(1): 49, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811931

ABSTRACT

BACKGROUND: The joint evidence of the cost and the effectiveness of family-based therapies is modest. OBJECTIVE: To study the cost-effectiveness of family therapy (FT) versus treatment-as-usual (TAU) for young people seen after self-harm combining data from an 18-month trial and hospital records up to 60-month from randomisation. METHODS: We estimate the cost-effectiveness of FT compared to TAU over 5 years using a quasi-Markov state model based on self-harm hospitalisations where probabilities of belonging in a state are directly estimated from hospital data. The primary outcome is quality-adjusted life years (QALY). Cost perspective is NHS and PSS and includes treatment costs, health care use, and hospital attendances whether it is for self-harm or not. Incremental cost-effectiveness ratios are calculated and deterministic and probabilistic sensitivity analyses are conducted. RESULTS: Both trial arms show a significant decrease in hospitalisations over the 60-month follow-up. In the base case scenario, FT participants incur higher costs (mean +£1,693) and negative incremental QALYs (-0.01) than TAU patients. The associated ICER at 5 years is dominated and the incremental health benefit at the £30,000 per QALY threshold is -0.067. Probabilistic Sensitivity Analysis finds the probability that FT is cost-effective is around 3 - 2% up to a maximum willingness to pay of £50,000 per QALY. This suggest that the extension of the data to 60 months show no difference in effectiveness between treatments. CONCLUSION: Whilst extended trial follow-up from routinely collected statistics is useful to improve the modelling of longer-term cost-effectiveness, FT is not cost-effective relative to TAU and dominated in a cost-utility analysis.

3.
Nat Neurosci ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802592

ABSTRACT

As discovery of cellular diversity in the brain accelerates, so does the need for tools that target cells based on multiple features. Here we developed Conditional Viral Expression by Ribozyme Guided Degradation (ConVERGD), an adeno-associated virus-based, single-construct, intersectional targeting strategy that combines a self-cleaving ribozyme with traditional FLEx switches to deliver molecular cargo to specific neuronal subtypes. ConVERGD offers benefits over existing intersectional expression platforms, such as expanded intersectional targeting with up to five recombinase-based features, accommodation of larger and more complex payloads and a vector that is easy to modify for rapid toolkit expansion. In the present report we employed ConVERGD to characterize an unexplored subpopulation of norepinephrine (NE)-producing neurons within the rodent locus coeruleus that co-express the endogenous opioid gene prodynorphin (Pdyn). These studies showcase ConVERGD as a versatile tool for targeting diverse cell types and reveal Pdyn-expressing NE+ locus coeruleus neurons as a small neuronal subpopulation capable of driving anxiogenic behavioral responses in rodents.

4.
bioRxiv ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38370771

ABSTRACT

Engineering of embryonic strategies for tissue-building has extraordinary promise for regenerative medicine. This has led to a resurgence in interest in the relationship between cell biophysical properties and morphological transitions. However, mapping gene or protein expression data to cell biophysical properties to physical morphogenesis remains challenging with current techniques. Here we present MATCHY (multiplexed adhesion and traction of cells at high yield). MATCHY advances the multiplexing and throughput capabilities of existing traction force and cell-cell adhesion assays using microfabrication and an automated computation scheme with machine learning-driven cell segmentation. Both biophysical assays are coupled with serial downstream immunofluorescence to extract cell type/signaling state information. MATCHY is especially suited to complex primary tissue-, organoid-, or biopsy-derived cell mixtures since it does not rely on a priori knowledge of cell surface markers, cell sorting, or use of lineage-specific reporter animals. We first validate MATCHY on canine kidney epithelial cells engineered for RET tyrosine kinase expression and quantify a relationship between downstream signaling and cell traction. We go on to create a biophysical atlas of primary cells dissociated from the mouse embryonic kidney and use MATCHY to identify distinct biophysical states along the nephron differentiation trajectory. Our data complement expression-level knowledge of adhesion molecule changes that accompany nephron differentiation with quantitative biophysical information. These data reveal an 'energetic ratchet' that explains spatial nephron progenitor cell condensation from the niche as they differentiate, which we validate through agent-based computational simulation. MATCHY offers automated cell biophysical characterization at >104-cell throughput, a highly enabling advance for fundamental studies and new synthetic tissue design strategies for regenerative medicine.

5.
bioRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38045273

ABSTRACT

The mammalian kidney achieves massive parallelization of function by exponentially duplicating nephron-forming niches during development. Each niche caps a tip of the ureteric bud epithelium (the future urinary collecting duct tree) as it undergoes branching morphogenesis, while nephron progenitors within niches balance self-renewal and differentiation to early nephron cells. Nephron formation rate approximately matches branching rate over a large fraction of mouse gestation, yet the nature of this apparent pace-maker is unknown. Here we correlate spatial transcriptomics data with branching 'life-cycle' to discover rhythmically alternating signatures of nephron progenitor differentiation and renewal across Wnt, Hippo-Yap, retinoic acid (RA), and other pathways. We then find in human stem-cell derived nephron progenitor organoids that Wnt/ß-catenin-induced differentiation is converted to a renewal signal when it temporally overlaps with YAP activation. Similar experiments using RA activation indicate a role in setting nephron progenitor exit from the naive state, the spatial extent of differentiation, and nephron segment bias. Together the data suggest that nephron progenitor interpretation of consistent Wnt/ß-catenin differentiation signaling in the niche may be modified by rhythmic activity in ancillary pathways to set the pace of nephron formation. This would synchronize nephron formation with ureteric bud branching, which creates new sites for nephron condensation. Our data bring temporal resolution to the renewal vs. differentiation balance in the nephrogenic niche and inform new strategies to achieve self-sustaining nephron formation in synthetic human kidney tissues.

6.
bioRxiv ; 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37961546

ABSTRACT

Human organoids are a promising approach for disease modeling and regenerative medicine. However, organoid variability and limited control over morphological outcomes remain significant challenges. Here we extend a DNA 'velcro' cell patterning approach, precisely controlling the number and ratio of human stem cell-derived progenitors contributing to nephron and mosaic nephron/ureteric bud organoids within arrays of microwells. We demonstrate long-term control over organoid size and morphology, decoupled from geometric constraints.

7.
Anal Chem ; 95(48): 17894-17902, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37974303

ABSTRACT

While there are many techniques to achieve highly sensitive, multiplex detection of RNA and DNA from single cells, detecting protein content often suffers from low limits of detection and throughput. Miniaturized, high-sensitivity Western blots on single cells (scWesterns) are attractive because they do not require advanced instrumentation. By physically separating analytes, scWesterns also uniquely mitigate limitations to target protein multiplexing posed by the affinity reagent performance. However, a fundamental limitation of scWesterns is their limited sensitivity for detecting low-abundance proteins, which arises from transport barriers posed by the separation gel against detection species. Here we address the sensitivity by decoupling the electrophoretic separation medium from the detection medium. We transfer scWestern separations to a nitrocellulose blotting medium with distinct mass transfer advantages over traditional in-gel probing, yielding a 5.9-fold improvement in the limit of detection. We next amplify probing of blotted proteins with enzyme-antibody conjugates, which are incompatible with traditional in-gel probing to achieve further improvement in the limit of detection to 1000 molecules, a 120-fold improvement. This enables us to detect 100% of cells in an EGFP-expressing population using fluorescently tagged and enzyme-conjugated antibodies compared to 84.5% of cells using in-gel detection. These results suggest the compatibility of nitrocellulose-immobilized scWesterns with a variety of affinity reagents─not previously accessible for in-gel use─for further signal amplification and detection of low-abundance targets.


Subject(s)
Immunoconjugates , Proteins , Collodion , Antibodies , Blotting, Western , Indicators and Reagents
8.
bioRxiv ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37986773

ABSTRACT

Controlling the time and place of nephron formation in vitro would improve nephron density and connectivity in next-generation kidney replacement tissues. Recent developments in kidney organoid technology have paved the way to achieving self-sustaining nephrogenic niches in vitro. The physical and geometric structure of the niche are key control parameters in tissue engineering approaches. However, their relationship to nephron differentiation is unclear. Here we investigate the relationship between niche geometry, cell compartment mixing, and nephron differentiation by targeting the Rho/ROCK pathway, a master regulator of the actin cytoskeleton. We find that the ROCK inhibitor Y-27632 increases mixing between nephron progenitor and stromal compartments in native mouse embryonic kidney niches, and also increases nephrogenesis. Similar increases are also seen in reductionist mouse primary cell and human induced pluripotent stem cell (iPSC)-derived organoids perturbed by Y-27632, dependent on the presence of stromal cells. Our data indicate that niche organization is a determinant of nephron formation rate, bringing renewed focus to the spatial context of cell-cell interactions in kidney tissue engineering efforts.

10.
bioRxiv ; 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37398364

ABSTRACT

While there are many techniques to achieve highly sensitive, multiplex detection of RNA and DNA from single cells, detecting protein contents often suffers from low limits of detection and throughput. Miniaturized, high-sensitivity western blots on single cells (scWesterns) are attractive since they do not require advanced instrumentation. By physically separating analytes, scWesterns also uniquely mitigate limitations to target protein multiplexing posed by affinity reagent performance. However, a fundamental limitation of scWesterns is their limited sensitivity for detecting low-abundance proteins, which arises from transport barriers posed by the separation gel against detection species. Here we address sensitivity by decoupling the electrophoretic separation medium from the detection medium. We transfer scWestern separations to a nitrocellulose blotting medium with distinct mass transfer advantages over traditional in-gel probing, yielding a 5.9-fold improvement in limit of detection. We next amplify probing of blotted proteins with enzyme-antibody conjugates which are incompatible with traditional in-gel probing to achieve further improvement in the limit of detection to 103 molecules, a 520-fold improvement. This enables us to detect 85% and 100% of cells in an EGFP-expressing population using fluorescently tagged and enzyme-conjugated antibodies respectively, compared to 47% of cells using in-gel detection. These results suggest compatibility of nitrocellulose-immobilized scWesterns with a variety of affinity reagents - not previously accessible for in-gel use - for further signal amplification and detection of low abundance targets.

11.
iScience ; 26(5): 106657, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37168559

ABSTRACT

Tissue boundaries and interfaces are engines of morphogenesis in vivo. However, despite a wealth of micropatterning approaches available to control tissue size, shape, and mechanical environment in vitro, fine-scale spatial control of cell positioning within tissue constructs remains an engineering challenge. To address this, we augment DNA "velcro" technology for selective patterning of ssDNA-labeled cells on mechanically defined photoactive polyacrylamide hydrogels. Hydrogels bearing photopatterned single-stranded DNA (ssDNA) features for cell capture are then co-functionalized with extracellular matrix (ECM) proteins to support subsequent adhesion of patterned tissues. ECM protein co-functionalization does not alter ssDNA pattern fidelity, cell capture, or hydrogel elastic stiffness. This approach enables mechanobiology studies and measurements of signaling activity at dynamic cell interfaces with precise initial patterning. Combining DNA velcro patterning and ECM functionalization provides independent control of initial cell placement, adhesion, and mechanics, constituting a new tool for studying biological interfaces and for programming multicellular interactions in engineered tissues.

12.
bioRxiv ; 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36798174

ABSTRACT

As the discovery of cellular diversity in the brain accelerates, so does the need for functional tools that target cells based on multiple features, such as gene expression and projection target. By selectively driving recombinase expression in a feature-specific manner, one can utilize intersectional strategies to conditionally promote payload expression only where multiple features overlap. We developed Conditional Viral Expression by Ribozyme Guided Degradation (ConVERGD), a single-construct intersectional targeting strategy that combines a self-cleaving ribozyme with traditional FLEx switches. ConVERGD offers benefits over existing platforms, such as expanded intersectionality, the ability to accommodate larger and more complex payloads, and a vector design that is easily modified to better facilitate rapid toolkit expansion. To demonstrate its utility for interrogating neural circuitry, we employed ConVERGD to target an unexplored subpopulation of norepinephrine (NE)-producing neurons within the rodent locus coeruleus (LC) identified via single-cell transcriptomic profiling to co-express the stress-related endogenous opioid gene prodynorphin (Pdyn). These studies showcase ConVERGD as a versatile tool for targeting diverse cell types and reveal Pdyn-expressing NE+ LC neurons as a small neuronal subpopulation capable of driving anxiogenic behavioral responses in rodents.

13.
Dev Cell ; 58(2): 110-120.e5, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36693318

ABSTRACT

The physiological functions of several organs rely on branched epithelial tubule networks bearing specialized structures for secretion, gas exchange, or filtration. Little is known about conflicts in development between building enough tubules for adequate function and geometric constraints imposed by organ size. We show that the mouse embryonic kidney epithelium negotiates a physical packing conflict between increasing tubule tip numbers through branching and limited organ surface area. Through imaging of whole kidney explants, combined with computational and soft material modeling of tubule families, we identify six possible geometric packing phases, including two defective ones. Experiments in explants show that a radially oriented tension on tubule families is necessary and sufficient for them to switch to a vertical packing arrangement that increases surface tip density while avoiding defects. These results reveal developmental contingencies in response to physical limitations and create a framework for classifying congenital kidney defects.


Subject(s)
Kidney , Mice , Animals , Epithelium , Morphogenesis/physiology
14.
Article in English | MEDLINE | ID: mdl-36585222

ABSTRACT

BACKGROUND: Advanced heart failure patients suffer with breathlessness and peripheral oedema, which are frequently treated with parenteral diuretics despite limited evidence. AIM: To analyse the effectiveness of parenteral diuretics on breathlessness and peripheral oedema in advanced heart failure patients. METHODS: We searched Embase, MEDLINE(R), PsycINFO, CINAHL and CENTRAL from their respective inceptions to 2021, and performed handsearching, citation searching and grey literature search; limited to English publications. Selection criteria included parenteral (intravenous/subcutaneous) diuretic administration in advanced heart failure patients (New York Heart Association class III-IV). Two authors independently assessed articles for inclusion; one author extracted data. Data were synthesised through narrative synthesis or meta-analysed as appropriate. RESULTS: 4646 records were screened; 6 trials (384 participants) were included. All were randomised controlled trials (RCTs) comparing intravenous continuous furosemide infusion (CFI) versus intravenous bolus furosemide infusion (BFI). Improvement in breathlessness and peripheral oedema (two studies, n=161, OR 2.80, 95% CI 1.45 to 5.40; I2=0%), and increase in urine output (four studies, n=234, mean difference, MD 344.76, 95% CI 132.87 to 556.64; I2=44%), were statistically significant in favour of CFI. Significantly lower serum potassium was found in BFI compared with CFI (three studies, n=194, MD -0.20, 95% CI -0.38 to -0.01; I2=0%). There was no difference between CFI and BFI on reduction in weight, renal function or length of hospital stay. CONCLUSIONS: CFI appears to improve congestion in advanced heart failure patients in the short term. Available data came from small trials. Larger, prospective RCTs are recommended to address the evidence gap.

15.
Ann N Y Acad Sci ; 1518(1): 183-195, 2022 12.
Article in English | MEDLINE | ID: mdl-36177947

ABSTRACT

The ability to engineer complex multicellular systems has enormous potential to inform our understanding of biological processes and disease and alter the drug development process. Engineering living systems to emulate natural processes or to incorporate new functions relies on a detailed understanding of the biochemical, mechanical, and other cues between cells and between cells and their environment that result in the coordinated action of multicellular systems. On April 3-6, 2022, experts in the field met at the Keystone symposium "Engineering Multicellular Living Systems" to discuss recent advances in understanding how cells cooperate within a multicellular system, as well as recent efforts to engineer systems like organ-on-a-chip models, biological robots, and organoids. Given the similarities and common themes, this meeting was held in conjunction with the symposium "Organoids as Tools for Fundamental Discovery and Translation".


Subject(s)
Engineering , Organoids , Humans , Tissue Engineering
16.
Cell Syst ; 13(7): 547-560.e3, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35705097

ABSTRACT

Organoids recapitulate complex 3D organ structures and represent a unique opportunity to probe the principles of self-organization. While we can alter an organoid's morphology by manipulating the culture conditions, the morphology of an organoid often resembles that of its original organ, suggesting that organoid morphologies are governed by a set of tissue-specific constraints. Here, we establish a framework to identify constraints on an organoid's morphological features by quantifying them from microscopy images of organoids exposed to a range of perturbations. We apply this framework to Madin-Darby canine kidney cysts and show that they obey a number of constraints taking the form of scaling relationships or caps on certain parameters. For example, we found that the number, but not size, of cells increases with increasing cyst size. We also find that these constraints vary with cyst age and can be altered by varying the culture conditions. We observed similar sets of constraints in intestinal organoids. This quantitative framework for identifying constraints on organoid morphologies may inform future efforts to engineer organoids.


Subject(s)
Cysts , Organoids , Animals , Dogs , Phenotype
17.
Molecules ; 26(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34641335

ABSTRACT

Polyethylene glycol (PEG) surface conjugations are widely employed to render passivating properties to nanoparticles in biological applications. The benefits of surface passivation by PEG are reduced protein adsorption, diminished non-specific interactions, and improvement in pharmacokinetics. However, the limitations of PEG passivation remain an active area of research, and recent examples from the literature demonstrate how PEG passivation can fail. Here, we study the adsorption amount of biomolecules to PEGylated gold nanoparticles (AuNPs), focusing on how different protein properties influence binding. The AuNPs are PEGylated with three different sizes of conjugated PEG chains, and we examine interactions with proteins of different sizes, charges, and surface cysteine content. The experiments are carried out in vitro at physiologically relevant timescales to obtain the adsorption amounts and rates of each biomolecule on AuNP-PEGs of varying compositions. Our findings are relevant in understanding how protein size and the surface cysteine content affect binding, and our work reveals that cysteine residues can dramatically increase adsorption rates on PEGylated AuNPs. Moreover, shorter chain PEG molecules passivate the AuNP surface more effectively against all protein types.


Subject(s)
Gold/chemistry , Peptides/chemistry , Polyethylene Glycols/chemistry , Proteins/chemistry , Adsorption , Cysteine/chemistry , Magnetic Resonance Spectroscopy , Metal Nanoparticles , Models, Molecular , Particle Size , Protein Conformation , Surface Properties
18.
Stem Cell Reports ; 16(5): 1104-1116, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33979597

ABSTRACT

Stem cell-based in vitro models of embryonic development have been established over the last decade. Such model systems recapitulate aspects of gametogenesis, early embryonic development, or organogenesis. They enable experimental approaches that have not been possible previously and have the potential to greatly reduce the number of animals required for research. However, each model system has its own limitations, with certain aspects, such as morphogenesis and spatiotemporal control of cell fate decisions, diverging from the in vivo counterpart. Targeted bioengineering approaches to provide defined instructive external signals or to modulate internal cellular signals could overcome some of these limitations. Here, we present the latest technical developments and discuss how bioengineering can further advance the optimization and external control of stem cell-based embryo-like structures (ELSs). In vitro models combined with sophisticated bioengineering tools will enable an even more in-depth analysis of embryonic development in the future.


Subject(s)
Bioengineering , Embryonic Development , Models, Biological , Animals , Cell Engineering , Humans , Organogenesis
19.
Cell ; 184(1): 18-32, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33417859

ABSTRACT

Building tissues from scratch to explore entirely new cell configurations could revolutionize fundamental understanding in biology. Bioprinting is an emerging technology to do this. Although typically applied to engineer tissues for therapeutic tissue repair or drug screening, there are many opportunities for bioprinting within biology, such as for exploring cellular crosstalk or cellular morphogenesis. The overall goals of this Primer are to provide an overview of bioprinting with the biologist in mind, outline the steps in extrusion bioprinting (the most widely used and accessible technology), and discuss alternative bioprinting technologies and future opportunities for bioprinting in biology.


Subject(s)
Biology , Bioprinting , Disease , Humans , Ink , Tissue Engineering
20.
Adv Mater ; 32(31): e2002195, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32578300

ABSTRACT

Forces and relative movement between cells and extracellular matrix (ECM) are crucial to the self-organization of tissues during development. However, the spatial range over which these dynamics can be controlled in engineering approaches is limited, impeding progress toward the construction of large, structurally mature tissues. Herein, shape-morphing materials called "kinomorphs" that rationally control the shape and size of multicellular networks are described. Kinomorphs are sheets of ECM that change their shape, size, and density depending on patterns of cell contractility within them. It is shown that these changes can manipulate structure-forming behaviors of epithelial cells in many spatial locations at once. Kinomorphs are built using a new photolithographic technology to pattern single cells into ECM sheets that are >10× larger than previously described. These patterns are designed to partially mimic the branch geometry of the embryonic kidney epithelial network. Origami-inspired simulations are then used to predict changes in kinomorph shapes. Last, kinomorph dynamics are shown to provide a centimeter-scale program that sets specific spatial locations in which ≈50 µm-diameter epithelial tubules form by cell coalescence and structural maturation. The kinomorphs may significantly advance organ-scale tissue construction by extending the spatial range of cell self-organization in emerging model systems such as organoids.


Subject(s)
Hydrogels/chemistry , Tissue Engineering , Animals , DNA, Single-Stranded/chemistry , Dogs , Extracellular Matrix/chemistry , Madin Darby Canine Kidney Cells , Mice , Microfluidics , NIH 3T3 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...