Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Thorac Oncol ; 18(10): 1362-1385, 2023 10.
Article in English | MEDLINE | ID: mdl-37455012

ABSTRACT

INTRODUCTION: Vasculogenic mimicry (VM), the process of tumor cell transdifferentiation to endow endothelial-like characteristics supporting de novo vessel formation, is associated with poor prognosis in several tumor types, including SCLC. In genetically engineered mouse models (GEMMs) of SCLC, NOTCH, and MYC co-operate to drive a neuroendocrine (NE) to non-NE phenotypic switch, and co-operation between NE and non-NE cells is required for metastasis. Here, we define the phenotype of VM-competent cells and molecular mechanisms underpinning SCLC VM using circulating tumor cell-derived explant (CDX) models and GEMMs. METHODS: We analyzed perfusion within VM vessels and their association with NE and non-NE phenotypes using multiplex immunohistochemistry in CDX, GEMMs, and patient biopsies. We evaluated their three-dimensional structure and defined collagen-integrin interactions. RESULTS: We found that VM vessels are present in 23/25 CDX models, 2 GEMMs, and in 20 patient biopsies of SCLC. Perfused VM vessels support tumor growth and only NOTCH-active non-NE cells are VM-competent in vivo and ex vivo, expressing pseudohypoxia, blood vessel development, and extracellular matrix organization signatures. On Matrigel, VM-primed non-NE cells remodel extracellular matrix into hollow tubules in an integrin ß1-dependent process. CONCLUSIONS: We identified VM as an exemplar of functional heterogeneity and plasticity in SCLC and these findings take considerable steps toward understanding the molecular events that enable VM. These results support therapeutic co-targeting of both NE and non-NE cells to curtail SCLC progression and to improve the outcomes of patients with SCLC in the future.


Subject(s)
Lung Neoplasms , Animals , Mice , Humans , Lung Neoplasms/pathology , Neovascularization, Pathologic/genetics , Cell Transdifferentiation , Cell Line, Tumor
2.
J Immunother Cancer ; 8(2)2020 10.
Article in English | MEDLINE | ID: mdl-33093155

ABSTRACT

BACKGROUND: Despite striking successes, immunotherapies aimed at increasing cancer-specific T cell responses are unsuccessful in most patients with cancer. Inactivating regulatory T cells (Treg) by inhibiting the PI3Kδ signaling enzyme has shown promise in preclinical models of tumor immunity and is currently being tested in early phase clinical trials in solid tumors. METHODS: Mice bearing 4T1 mammary tumors were orally administered a PI3Kδ inhibitor (PI-3065) daily and tumor growth, survival and T cell infiltrate were analyzed in the tumor microenvironment. A second treatment schedule comprised PI3Kδ inhibitor with anti-LAG3 antibodies administered sequentially 10 days later. RESULTS: As observed in human immunotherapy trials with other agents, immunomodulation by PI3Kδ-blockade led to 4T1 tumor regressor and non-regressor mice. Tumor infiltrating T cells in regressors were metabolically fitter than those in non-regressors, with significant enrichments of antigen-specific CD8+ T cells, T cell factor 1 (TCF1)+ T cells and CD69- T cells, compatible with induction of a sustained tumor-specific T cell response. Treg numbers were significantly reduced in both regressor and non-regressor tumors compared with untreated tumors. The remaining Treg in non-regressor tumors were however significantly enriched with cells expressing the coinhibitory receptor LAG3, compared with Treg in regressor and untreated tumors. This striking difference prompted us to sequentially block PI3Kδ and LAG3. This combination enabled successful therapy of all mice, demonstrating the functional importance of LAG3 in non-regression of tumors on PI3Kδ inhibition therapy. Follow-up studies, performed using additional cancer cell lines, namely MC38 and CT26, indicated that a partial initial response to PI3Kδ inhibition is an essential prerequisite to a sequential therapeutic benefit of anti-LAG3 antibodies. CONCLUSIONS: These data indicate that LAG3 is a key bottleneck to successful PI3Kδ-targeted immunotherapy and provide a rationale for combining PI3Kδ/LAG3 blockade in future clinical studies.


Subject(s)
Antigens, CD/metabolism , Class I Phosphatidylinositol 3-Kinases/metabolism , Immunotherapy/methods , Neoplasms/immunology , Animals , Female , Humans , Mice , Tumor Microenvironment , Lymphocyte Activation Gene 3 Protein
3.
Cancer Immunol Immunother ; 69(10): 2063-2073, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32447412

ABSTRACT

Although metastatic disease is responsible for the majority of cancer deaths, tests of novel immunotherapies in mouse tumour models often focus on primary tumours without determining whether these therapies also target metastatic disease. This study examined the impact of depleting Foxp3+ regulatory T cells (Treg), on lung metastases, using a mouse model of breast cancer. After Treg-depletion, generation of an immune response to the primary tumour was a critical determinant for limiting development of metastasis. Indeed, resection of the primary tumour abrogated any effect of Treg-depletion on metastases. In addition, whilst the immune response, generated by the primary tumour, prevented metastases development, it had little impact on controlling established disease. Collectively, the data indicate that metastatic cells in the lung are not controlled by immune responses induced by the primary tumour. These findings indicate that targeting Tregs alone will not suffice for treating lung metastases.


Subject(s)
Immunotherapy/methods , Lung Neoplasms/immunology , Lymphocyte Depletion/methods , Lymphocytes, Tumor-Infiltrating/immunology , T-Lymphocytes, Regulatory/immunology , Triple Negative Breast Neoplasms/immunology , Animals , Female , Forkhead Transcription Factors/metabolism , Lung Neoplasms/secondary , Lung Neoplasms/therapy , Lymphocytes, Tumor-Infiltrating/drug effects , Mice , T-Lymphocytes, Regulatory/drug effects , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/therapy
4.
Immunology ; 154(1): 62-68, 2018 05.
Article in English | MEDLINE | ID: mdl-29460448

ABSTRACT

The power of T cells for cancer treatment has been demonstrated by the success of co-inhibitory receptor blockade and adoptive T-cell immunotherapies. These treatments are highly successful for certain cancers, but are often personalized, expensive and associated with harmful side effects. Other T-cell-modulating drugs may provide additional means of improving immune responses to tumours without these disadvantages. Conventional chemotherapeutic drugs are traditionally used to target cancers directly; however, it is clear that some also have significant immune-modulating effects that can be harnessed to target tumours. Cyclophosphamide is one such drug; used at lower doses than in mainstream chemotherapy, it can perturb immune homeostasis, tipping the balance towards generation of anti-tumour T-cell responses and control of cancer growth. This review discusses its growing reputation as an immune-modulator whose multiple effects synergize with the microbiota to tip the balance towards tumour immunity offering widespread benefits as a safe, and relatively inexpensive component of cancer immunotherapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Cyclophosphamide/therapeutic use , Immunologic Factors/therapeutic use , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/drug effects , Neoplasms/drug therapy , T-Lymphocytes/drug effects , Animals , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/immunology , Neoplasms/pathology , T-Lymphocytes/immunology , Treatment Outcome , Tumor Escape/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...