Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoarthritis Cartilage ; 28(8): 1092-1101, 2020 08.
Article in English | MEDLINE | ID: mdl-32407894

ABSTRACT

OBJECTIVE: Recent research in knee osteoarthritis (OA) highlights the role of the meniscus in OA pathology. Our aim was to compare the proteomes of medial and lateral menisci from end-stage medial compartment knee OA patients, with reference menisci from knee-healthy deceased donors, using mass spectrometry. DESIGN: Tissue plugs of Ø3 mm were obtained from the posterior horns of the lateral and medial menisci from one knee of 10 knee-healthy deceased donors and 10 patients undergoing knee replacement. Proteins were extracted and prepared for mass spectrometric analysis. Statistical analysis was conducted on abundance data that was log2-transformed, using a linear mixed effects model and evaluated using pathway analysis. RESULTS: We identified a total of 835 proteins in all samples, of which 331 were included in the statistical analysis. The largest differences could be seen between the medial menisci from OA patients and references, with most proteins showing higher intensities in the medial menisci from OA patients. Several matrix proteins, e.g., matrix metalloproteinase 3 (MMP3) (4.3 times higher values [95%CI 1.8, 10.6]), TIMP1 (3.5 [1.4, 8.5]), asporin (4.1 [1.7, 10.0]) and versican (4.4 [1.8, 10.9]), all showed higher abundance in medial menisci from OA patients compared to medial reference menisci. OA medial menisci also showed increased activation of several pathways involved in inflammation. CONCLUSION: An increase in protein abundance for proteins such as MMP and TIMP1 in the medial menisci from OA patients suggests simultaneous activation of both catabolic and anabolic processes that warrants further attention.


Subject(s)
Extracellular Matrix Proteins/metabolism , Inflammation/metabolism , Menisci, Tibial/metabolism , Osteoarthritis, Knee/metabolism , Proteomics , Adolescent , Adult , Aged , Case-Control Studies , Female , Humans , Male , Mass Spectrometry , Matrix Metalloproteinase 3/metabolism , Middle Aged , Tissue Inhibitor of Metalloproteinase-1/metabolism , Versicans/metabolism
2.
Osteoarthritis Cartilage ; 27(3): 476-483, 2019 03.
Article in English | MEDLINE | ID: mdl-30552967

ABSTRACT

OBJECTIVE: To investigate the relationship between meniscus magnetic resonance (MR) relaxation parameters and meniscus degradation through quantitative imaging of ex vivo posterior horns of menisci from subjects with and without knee osteoarthritis (OA). DESIGN: We sampled medial and lateral menisci from ten medial compartment knee OA patients (mean age 63 years) undergoing total knee replacement and from ten deceased donors (references, mean age 51 years). MR relaxation parameters T2*, T2 and T1 of the posterior horn were measured at a 9.4 T scanner. Comparisons were made between OA patients and references (with adjustment for age) as well as between medial and lateral menisci from the same knees. RESULTS: Mean values (standard deviation) of mean T2* were 13 (3.8), 6.9 (2.3), 7.2 (1.9) and 7.2 (1.7) ms for the medial and lateral patient menisci and the medial and lateral reference menisci, respectively. Corresponding values were 17 (3.7), 9.0 (2.2), 12 (4) and 9.0 (1.3) ms for T2 and 1810 (150), 1630 (30), 1580 (90) and 1560 (50) ms for T1. All three relaxation times were significantly longer in medial OA menisci compared to the other groups. Among medial reference menisci, relaxation times (mainly T1) tended to increase with age. CONCLUSIONS: MR relaxation times T2*, T2 and T1 in the posterior horn are longer in the medial menisci of patients with end-stage medial compartment knee OA compared to the corresponding lateral menisci and to reference menisci. The meniscus seems to undergo intrasubstance alterations related to both OA and ageing.


Subject(s)
Magnetic Resonance Imaging/methods , Meniscus/diagnostic imaging , Aged , Case-Control Studies , Female , Humans , Knee Joint/diagnostic imaging , Male , Middle Aged , Osteoarthritis, Knee/diagnostic imaging
4.
Br J Pharmacol ; 153(2): 380-9, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17965731

ABSTRACT

BACKGROUND AND PURPOSE: N-arachidonoyl ethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG) are endogenous cannabinoids binding to the cannabinoid receptors CB1 and CB2 to modulate neuronal excitability and synaptic transmission in primary afferent neurons. To investigate the compartmentalization of the machinery for AEA and 2-AG signalling, we studied their partitioning into lipid raft fractions isolated from a dorsal root ganglion X neuroblastoma cell line (F-11). EXPERIMENTAL APPROACH: F-11 cells were homogenized and fractionated using a detergent-free OptiPrep density gradient. All lipids were partially purified from methanolic extracts of the fractions on solid phase cartridges and quantified using liquid chromatography tandem mass spectrometry (LC/MS/MS). Protein distribution was determined by Western blotting. KEY RESULTS: Under basal conditions, the endogenous cannabinoid AEA was present in both lipid raft and specific non-lipid raft fractions as was one of its biosynthetic enzymes, NAPE-PLD. The 2-AG precursor 1-stearoyl-2-arachidonoyl-sn-glycerol (DAG), diacylglycerol lipase alpha (DAGLalpha), which cleaves DAG to form 2-AG, and 2-AG were all co-localized with lipid raft markers. CB1 receptors, previously reported to partition into lipid raft fractions, were not detected in F-11 membranes, but CB2 receptors were detected at high levels and partitioned into non-lipid raft fractions. CONCLUSIONS AND IMPLICATIONS: The biochemical machinery for the production of 2-AG via the putative diacylglycerol pathway is localized within lipid rafts, suggesting that 2-AG synthesis via DAG occurs within these microdomains. The observed co-localization of AEA, 2-AG, and their synthetic enzymes with the reported localization of CB1 raises the possibility of intrinsic-autocrine signalling within lipid raft domains and/or retrograde-paracrine signalling.


Subject(s)
Cannabinoid Receptor Modulators/metabolism , Endocannabinoids , Ganglia, Spinal/metabolism , Membrane Microdomains/metabolism , Arachidonic Acid/metabolism , Arachidonic Acids/pharmacology , Blotting, Western , Cell Line, Tumor , Chromatography, High Pressure Liquid , Diglycerides/metabolism , Ganglia, Spinal/cytology , Glycerides/pharmacology , Humans , Indicators and Reagents , Mass Spectrometry , Nerve Tissue Proteins/metabolism , Prostaglandins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...