Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 29(22): 6415-6422, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37736004

ABSTRACT

Freshwater ecosystems are increasingly threatened by multiple anthropogenic stressors. Release of treated sewage effluent and pollution from agricultural or urban sources can independently reduce water quality with implications for ecological communities. However, our knowledge of the combined effects of these stressors is limited. We performed a field study to quantify the combined effect of treated sewage discharge and land use on nutrient concentrations, sewage fungus presence and communities of macroinvertebrates and benthic algae. Over three seasons in four rivers we found that a model which included an interaction between sewage pollution and time of the year (i.e. months) was the best predictor of nutrient concentrations and the abundance of algae and sewage fungus. Both macroinvertebrate and algae communities shifted downstream of sewage input. Specifically, more tolerant groups, such as cyanobacteria and oligochaetes, were more abundant. The EPT (Ephemeroptera, Plecoptera and Tricoptera) water quality score was best explained by an interaction between month and agriculture in the surrounding landscape. Overall, our results show that sewage discharge has a significant impact on water quality and benthic riverine communities, regardless of the surrounding land uses. Agricultural inputs, however, could be more important than treated sewage discharge in reducing the abundance of sensitive invertebrate taxa. We need both improvements to wastewater treatment processes and reductions in agricultural pollution to reduce threats to vulnerable freshwater communities.


Subject(s)
Invertebrates , Sewage , Animals , Ecosystem , Environmental Monitoring/methods , Rivers
2.
Glob Chang Biol ; 29(5): 1248-1266, 2023 03.
Article in English | MEDLINE | ID: mdl-36366939

ABSTRACT

Trends and ecological consequences of phosphorus (P) decline and increasing nitrogen (N) to phosphorus (N:P) ratios in rivers and estuaries are reviewed and discussed. Results suggest that re-oligotrophication is a dominant trend in rivers and estuaries of high-income countries in the last two-three decades, while in low-income countries widespread eutrophication occurs. The decline in P is well documented in hundreds of rivers of United States and the European Union, but the biotic response of rivers and estuaries besides phytoplankton decline such as trends in phytoplankton composition, changes in primary production, ecosystem shifts, cascading effects, changes in ecosystem metabolism, etc., have not been sufficiently monitored and investigated, neither the effects of N:P imbalance. N:P imbalance has significant ecological effects that need to be further investigated. There is a growing number of cases in which phytoplankton biomass have been shown to decrease due to re-oligotrophication, but the potential regime shift from phytoplankton to macrophyte dominance described in shallow lakes has been documented only in a few rivers and estuaries yet. The main reasons why regime shifts are rarely described in rivers and estuaries are, from one hand the scarcity of data on macrophyte cover trends, and from the other hand physical factors such as peak flows or high turbidity that could prevent a general spread of submerged macrophytes as observed in shallow lakes. Moreover, re-oligotrophication effects on rivers may be different compared to lakes (e.g., lower dominance of macrophytes) or estuaries (e.g., limitation of primary production by N instead of P) or may be dependent on river/estuary type. We conclude that river and estuary re-oligotrophication effects are complex, diverse and still little known, and in some cases are equivalent to those described in shallow lakes, but the regime shift is more likely to occur in mid to high-order rivers and shallow estuaries.


Subject(s)
Ecosystem , Rivers , Estuaries , Biomass , Phytoplankton/metabolism , Lakes , Eutrophication , Phosphorus/metabolism
3.
Sci Total Environ ; 816: 151638, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-34774956

ABSTRACT

In contrast to marine ecosystems, the toxicity impact of microplastics in freshwater environments is poorly understood. This contribution reviews the literature on the range of effects of microplastics across and between trophic levels within the freshwater environment, including biofilms, macrophytes, phytoplankton, invertebrates, fish and amphibians. While there is supporting evidence for toxicity in some species e.g. growth reduction for photoautotrophs, increased mortality for some invertebrates, genetic changes in amphibians, and cell internalization of microplastics and nanoplastics in fish; other studies show that it is uncertain whether microplastics can have detrimental long-term impacts on ecosystems. Some taxa have yet to be studied e.g. benthic diatoms, while only 12% of publications on microplastics in freshwater, demonstrate trophic transfer in foodwebs. The fact that just 2% of publications focus on microplastics colonized by biofilms is hugely concerning given the cascading detrimental effects this could have on freshwater ecosystem function. Multiple additional stressors including environmental change (temperature rises and invasive species) and contaminants of anthropogenic origin (antibiotics, metals, pesticides and endocrine disruptors) will likely exacerbate negative interactions between microplastics and freshwater organisms, with potentially significant damaging consequences to freshwater ecosystems and foodwebs.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Biota , Ecosystem , Environmental Monitoring , Fresh Water , Plastics/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
4.
Environ Sci Pollut Res Int ; 28(22): 27731-27741, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33515152

ABSTRACT

A continuous flow filtration system was designed to identify and quantify the removal mechanisms of Cyanobacteria (Microcystis aeruginosa) by hydroponic biofilters of Phalaris arundinacea compared to synthetic filters. The filtration units were continuously fed under plug-flow conditions with Microcystis grown in photobioreactors. Microcystis cells decreased at the two flow rates studied (1.2 ± 0.2 and 54 ± 3 cm3 min-1) and results suggested physical and chemical/biological removal mechanisms were involved. Physical interception and deposition was the main removal mechanism with packing density of the media driving the extent of cell removal at high flow, whilst physical and chemical/biological mechanisms were involved at low flow. At low flow, the biofilters decreased Microcystis cell numbers by 70% compared to the controls. The decrease in cell numbers in the biofilters was accompanied by a chlorotic process (loss of green colour), suggesting oxidative processes by the release of allelochemicals from the biofilters.


Subject(s)
Cyanobacteria , Microcystis , Allelopathy , Filtration , Pheromones
SELECTION OF CITATIONS
SEARCH DETAIL
...