Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Thromb Haemost ; 121(11): 1483-1496, 2021 11.
Article in English | MEDLINE | ID: mdl-33540457

ABSTRACT

BACKGROUND: High estradiol (E2) levels are linked to an increased risk of venous thromboembolism; however, the underlying molecular mechanism(s) remain poorly understood. We previously identified an E2-responsive microRNA (miR), miR-494-3p, that downregulates protein S expression, and posited additional coagulation factors, such as tissue factor, may be regulated in a similar manner via miRs. OBJECTIVES: To evaluate the coagulation capacity of cohorts with high physiological E2, and to further characterize novel E2-responsive miR and miR regulation on tissue factor in E2-related hypercoagulability. METHODS: Ceveron Alpha thrombin generation assay (TGA) was used to assess plasma coagulation profile of three cohorts. The effect of physiological levels of E2, 10 nM, on miR expression in HuH-7 cells was compared using NanoString nCounter and validated with independent assays. The effect of tissue factor-interacting miR was confirmed by dual-luciferase reporter assays, immunoblotting, flow cytometry, biochemistry assays, and TGA. RESULTS: Plasma samples from pregnant women and women on the contraceptive pill were confirmed to be hypercoagulable (compared with sex-matched controls). At equivalent and high physiological levels of E2, miR-365a-3p displayed concordant E2 downregulation in two independent miR quantification platforms, and tissue factor protein was upregulated by E2 treatment. Direct interaction between miR-365a-3p and F3-3'UTR was confirmed and overexpression of miR-365a-3p led to a decrease of (1) tissue factor mRNA transcripts, (2) protein levels, (3) activity, and (4) tissue factor-initiated thrombin generation. CONCLUSION: miR-365a-3p is a novel tissue factor regulator. High E2 concentrations induce a hypercoagulable state via a miR network specific for coagulation factors.


Subject(s)
3' Untranslated Regions , Blood Coagulation/drug effects , Contraceptives, Oral, Hormonal/pharmacology , Estradiol/pharmacology , MicroRNAs/metabolism , Thrombin/metabolism , Thromboplastin/metabolism , Adolescent , Adult , Binding Sites , Cell Line, Tumor , Contraceptives, Oral, Hormonal/blood , Estradiol/blood , Female , Gene Expression Regulation , Humans , MicroRNAs/genetics , Middle Aged , Pregnancy , Thromboplastin/genetics , Young Adult
2.
Semin Thromb Hemost ; 44(3): 206-215, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28926861

ABSTRACT

The small noncoding RNAs, microRNAs (or miRNAs), have been implicated in a myriad of diseases and accumulating evidence indicate their potential high value as diagnostic biomarkers. Although their roles in hemostasis and coagulation pathways are less defined, many studies have demonstrated their participation in regulating key factors of hemostasis. However, the mounting challenges associated with the accurate measurement of circulating miRNAs and the involvement of platelet activation in contributing to the circulating miRNA expression profile introduce further complexity to the study of thrombosis-associated miRNAs. This review outlines the current knowledge of miRNAs that have been postulated to regulate key hemostatic factors, and miRNA diagnostic panels in thrombotic disease, with a focus on experimental fundamentals, such as selecting condition-specific reference controls, considerations that are crucial for accurate evaluation of miRNAs in the context of disease biomarkers.


Subject(s)
Circulating MicroRNA/adverse effects , Thrombosis/etiology , Humans , Thrombosis/pathology
3.
RSC Adv ; 8(57): 32770-32774, 2018 Sep 18.
Article in English | MEDLINE | ID: mdl-35547719

ABSTRACT

Accurate detection of single nucleotide polymorphisms (SNPs) is paramount for the appropriate therapeutic intervention of debilitating diseases associated with SNPs. However, in some cases current nucleic acid probes fail to detect allele-specific mutations, for example, human platelet antigens, HPA-15a (TCC) and HPA-15b (TAC) alleles associated with neonatal alloimmune thrombocytopenia. Towards this, it is necessary to develop a novel assay for detection of allele-specific mutations. In this study, we investigated the potential of unlocked nucleic acid (UNA)-modified primers in SNP detection utilising an enzymatic polymerisation-based approach. Our results of primer extension and asymmetric polymerase chain reaction by KOD XL DNA polymerase revealed that UNA-modified primers achieved excellent allele-specificity in discriminating the human platelet antigen DNA template, whereas the DNA control primers were not able to differentiate between the normal and mutant alleles, demonstrating the scope of this novel UNA-based enzymatic approach as a robust methodology for efficient detection of allele-specific mismatches. Although further evaluation is required for other disease conditions, we firmly believe that our findings offer a great promise for the diagnosis of neonatal alloimmune thrombocytopenia and other SNP-related diseases.

4.
Molecules ; 22(10)2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29048375

ABSTRACT

Aptamers are short synthetic DNA or RNA oligonucleotides that adopt secondary and tertiary conformations based on Watson-Crick base-pairing interactions and can be used to target a range of different molecules. Two aptamers, HD1 and HD22, that bind to exosites I and II of the human thrombin molecule, respectively, have been extensively studied due to their anticoagulant potentials. However, a fundamental issue preventing the clinical translation of many aptamers is degradation by nucleases and reduced pharmacokinetic properties requiring higher dosing regimens more often. In this study, we have chemically modified the design of previously described thrombin binding aptamers targeting exosites I, HD1, and exosite II, HD22. The individual aptamers were first modified with an inverted deoxythymidine nucleotide, and then constructed bivalent aptamers by connecting the HD1 and HD22 aptamers either through a triethylene glycol (TEG) linkage or four consecutive deoxythymidines together with an inverted deoxythymidine nucleotide at the 3'-end. The anticoagulation potential, the reversal of coagulation with different antidote sequences, and the nuclease stability of the aptamers were then investigated. The results showed that a bivalent aptamer RNV220 containing an inverted deoxythymidine and a TEG linkage chemistry significantly enhanced the anticoagulation properties in blood plasma and nuclease stability compared to the existing aptamer designs. Furthermore, a bivalent antidote sequence RNV220AD efficiently reversed the anticoagulation effect of RNV220 in blood plasma. Based on our results, we believe that RNV220 could be developed as a potential anticoagulant therapeutic molecule.


Subject(s)
Aptamers, Nucleotide/chemical synthesis , Blood Coagulation/drug effects , Thrombin/metabolism , Antidotes/chemical synthesis , Antidotes/chemistry , Antidotes/pharmacology , Aptamers, Nucleotide/pharmacology , Binding Sites , Deoxyribonucleases/metabolism , Humans , Molecular Structure , Thrombin/chemistry
5.
Thromb Haemost ; 105(3): 454-60, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21174000

ABSTRACT

Inherited severe hypoplasminogenaemia is a multisystemic disorder leading to deficient extravascular fibrinolysis. As a clinical consequence wound healing capacity of mucous membranes is markedly impaired leading to ligneous conjunctivitis and several other manifestations. Here we report the molecular genetic and clinical findings on 23 new cases with severe hypoplasminogenaemia. Homozygous or compound-heterozygous mutations in the plasminogen (PLG) gene were found in 16 of 23 patients (70%), three of which were novel mutations reported here for the first time (C166Y, Y264S, IVS10-7T/G). Compared to 79 previously published cases, clinical manifestations of the current group of patients showed higher percentages of ligneous periodontitis, congenital hydrocephalus, and involvement of the female genital tract. In contrast, involvement of the gastrointestinal or urogenital tract was not observed in any of the cases. Patients originated to a large extent (61%) from Turkey and the Middle East, and showed a comparably frequent occurrence of consanguinity of affected families and a greater female to male ratio than was derived from previous reports in the literature. Individual treatment of ligneous conjunctivitis included topical plasminogen or heparin eye drops, topical or systemic fresh frozen plasma, and surgical removal of ligneous pseudomembranes, mostly with modest or transient efficacy. In conclusion, the present study underscores the broad range of clinical manifestations in PLG-deficient patients with a trend to regional differences. Transmission of genetic and clinical data to the recently established Plasminogen Deficiency Registry should help to determine the prevalence of the disease and to develop more efficient treatment strategies.


Subject(s)
Mutation , Plasminogen/biosynthesis , Plasminogen/genetics , Blood Coagulation Disorders/genetics , Child , Child, Preschool , Female , Heterozygote , Humans , Hydrocephalus/genetics , Infant , Infant, Newborn , Male , Models, Biological , Pedigree , Periodontitis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...