Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cell Rep ; 42(5): 112474, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37149863

ABSTRACT

Bacterial vaginosis (BV) is characterized by depletion of Lactobacillus and overgrowth of anaerobic and facultative bacteria, leading to increased mucosal inflammation, epithelial disruption, and poor reproductive health outcomes. However, the molecular mediators contributing to vaginal epithelial dysfunction are poorly understood. Here we utilize proteomic, transcriptomic, and metabolomic analyses to characterize biological features underlying BV in 405 African women and explore functional mechanisms in vitro. We identify five major vaginal microbiome groups: L. crispatus (21%), L. iners (18%), Lactobacillus (9%), Gardnerella (30%), and polymicrobial (22%). Using multi-omics we show that BV-associated epithelial disruption and mucosal inflammation link to the mammalian target of rapamycin (mTOR) pathway and associate with Gardnerella, M. mulieris, and specific metabolites including imidazole propionate. Experiments in vitro confirm that type strain G. vaginalis and M. mulieris supernatants and imidazole propionate directly affect epithelial barrier function and activation of mTOR pathways. These results find that the microbiome-mTOR axis is a central feature of epithelial dysfunction in BV.


Subject(s)
Microbiota , Vaginosis, Bacterial , Female , Humans , Proteomics , Vagina , Vaginosis, Bacterial/microbiology , Lactobacillus/physiology , Metabolome , TOR Serine-Threonine Kinases , Inflammation
2.
iScience ; 26(4): 106454, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37020953

ABSTRACT

Chronic immune activation during HIV-1 infection contributes to morbidity and mortality in people living with HIV. To elucidate the underlying biological pathways, we evaluated whole blood gene expression trajectories from before, through acute, and into chronic HIV-1 infection. Interferon-stimulated genes, including MX1, IFI27 and ISG15, were upregulated during acute infection, remained elevated into chronic infection, and were strongly correlated with plasma HIV-1 RNA as well as TNF-α and CXCL10 cytokine levels. In contrast, genes involved in cellular immune responses, such as CD8A, were upregulated during acute infection before reaching a peak and returning to near pre-infection levels in chronic infection. Our results indicate that chronic immune activation during HIV-1 infection is characterized by persistent elevation of a narrow set of interferon-stimulated genes and innate cytokines. These findings raise the prospect of devising a targeted intervention to restore healthy immune homeostasis in people living with HIV-1.

3.
J Clin Invest ; 133(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-36951943

ABSTRACT

Mucosal infections pose a significant global health burden. Antigen-specific tissue-resident T cells are critical to maintaining barrier immunity. Previous studies in the context of systemic infection suggest that memory CD8+ T cells may also provide innate-like protection against antigenically unrelated pathogens independent of T cell receptor engagement. Whether bystander T cell activation is also an important defense mechanism in the mucosa is poorly understood. Here, we investigated whether innate-like memory CD8+ T cells could protect against a model mucosal virus infection, herpes simplex virus 2 (HSV-2). We found that immunization with an irrelevant antigen delayed disease progression from lethal HSV-2 challenge, suggesting that memory CD8+ T cells may mediate protection despite the lack of antigen specificity. Upon HSV-2 infection, we observed an early infiltration, rather than substantial local proliferation, of antigen-nonspecific CD8+ T cells, which became bystander-activated only within the infected mucosal tissue. Critically, we show that bystander-activated CD8+ T cells are sufficient to reduce early viral burden after HSV-2 infection. Finally, local cytokine cues within the tissue microenvironment after infection were sufficient for bystander activation of mucosal tissue memory CD8+ T cells from mice and humans. Altogether, our findings suggest that local bystander activation of CD8+ memory T cells contributes a fast and effective innate-like response to infection in mucosal tissue.


Subject(s)
Herpes Simplex , Memory T Cells , Humans , Mice , Animals , Herpesvirus 2, Human , CD8-Positive T-Lymphocytes , Immunization , Immunologic Memory
4.
Open Forum Infect Dis ; 9(12): ofac620, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36519118

ABSTRACT

Background: The HIV reservoir of latently infected CD4+ T cells represents the barrier to cure. CD4+ T-cell proliferation is a mechanism that sustains the reservoir even during prolonged antiretroviral therapy (ART). Blocking proliferation may therefore deplete the reservoir. Methods: We conducted an unblinded, uncontrolled clinical trial of mycophenolate, a T-cell antiproliferative compound, in people with HIV on chronic suppressive ART. Study drug dose selection was based on calibration to an observed ex vivo antiproliferative effect. The primary outcome was clinically significant reduction (>0.25 log10) in the HIV reservoir, measured by total and intact HIV DNA per million T cells in blood over 48 weeks. Results: Five participants enrolled in the trial. Four participants took mycophenolate mofetil (MMF). One had a per-protocol switch to enteric-coated mycophenolate sodium (Myfortic) due to nausea but left the study for personal reasons. One participant developed finger cellulitis, but there were no opportunistic infections. In the 4 participants who completed the protocol, there was no clinically significant reduction in total or intact HIV DNA. There was no change in blood CD4+ T-cell subset composition within the HIV reservoir or the entire CD4+ T-cell population, although total CD4+ T cells decreased slightly in all 4 participants. An ex vivo antiproliferative effect was observed using participant serum obtained 1 hour after dosing, but this effect was severely diminished at drug trough. Conclusions: Mycophenolate given over 48 weeks did not reduce the volume or composition of the HIV reservoir. Clinical Trials registration: NCT03262441.

5.
Elife ; 112022 10 25.
Article in English | MEDLINE | ID: mdl-36281966

ABSTRACT

Background: Adolescent girls and young women (AGYW) are at high risk of sexually transmitted infections (STIs). It is unknown whether beginning to have sexual intercourse results in changes to immune mediators in the cervicovaginal tract that contribute to this risk. Methods: We collected cervicovaginal lavages from Kenyan AGYW in the months before and after first penile-vaginal sexual intercourse and measured the concentrations of 20 immune mediators. We compared concentrations pre- and post-first sex using mixed effect models. We additionally performed a systematic review to identify similar studies and combined them with our results by meta-analysis of individual participant data. Results: We included 180 samples from 95 AGYW, with 44% providing only pre-first sex samples, 35% matched pre and post, and 21% only post. We consistently detected 19/20 immune mediators, all of which increased post-first sex (p<0.05 for 13/19; Holm-Bonferroni-adjusted p<0.05 for IL-1ß, IL-2, and CXCL8). Effects remained similar after excluding samples with STIs and high Nugent scores. Concentrations increased cumulatively over time after date of first sex, with an estimated doubling time of about 5 months.Our systematic review identified two eligible studies, one of 93 Belgian participants, and the other of 18 American participants. Nine immune mediators were measured in at least two-thirds of studies. Meta-analysis confirmed higher levels post-first sex for 8/9 immune mediators (p<0.05 for six mediators, most prominently IL-1α, IL-1ß, and CXCL8). Conclusions: Cervicovaginal immune mediator concentrations were higher in women who reported that they started sexual activity. Results were consistent across three studies conducted on three different continents. Funding: This research was funded by R01 HD091996-01 (ACR), by P01 AI 030731-25 (Project 1) (AW), R01 AI116292 (FH), R03 AI154366 (FH) and by the Center for AIDS Research (CFAR) of the University of Washington/Fred Hutchinson Cancer Research Center AI027757.


Subject(s)
HIV Infections , Sexually Transmitted Diseases , Adolescent , Humans , Female , Coitus , Prospective Studies , Kenya , Interleukin-2 , Sexual Behavior , Immunologic Factors
6.
BMC Med ; 20(1): 353, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36195867

ABSTRACT

BACKGROUND: Hormonal changes during the menstrual cycle play a key role in shaping immunity in the cervicovaginal tract. Cervicovaginal fluid contains cytokines, chemokines, immunoglobulins, and other immune mediators. Many studies have shown that the concentrations of these immune mediators change throughout the menstrual cycle, but the studies have often shown inconsistent results. Our understanding of immunological correlates of the menstrual cycle remains limited and could be improved by meta-analysis of the available evidence. METHODS: We performed a systematic review and meta-analysis of cervicovaginal immune mediator concentrations throughout the menstrual cycle using individual participant data. Study eligibility included strict definitions of the cycle phase (by progesterone or days since the last menstrual period) and no use of hormonal contraception or intrauterine devices. We performed random-effects meta-analyses using inverse-variance pooling to estimate concentration differences between the follicular and luteal phases. In addition, we performed a new laboratory study, measuring select immune mediators in cervicovaginal lavage samples. RESULTS: We screened 1570 abstracts and identified 71 eligible studies. We analyzed data from 31 studies, encompassing 39,589 concentration measurements of 77 immune mediators made on 2112 samples from 871 participants. Meta-analyses were performed on 53 immune mediators. Antibodies, CC-type chemokines, MMPs, IL-6, IL-16, IL-1RA, G-CSF, GNLY, and ICAM1 were lower in the luteal phase than the follicular phase. Only IL-1α, HBD-2, and HBD-3 were elevated in the luteal phase. There was minimal change between the phases for CXCL8, 9, and 10, interferons, TNF, SLPI, elafin, lysozyme, lactoferrin, and interleukins 1ß, 2, 10, 12, 13, and 17A. The GRADE strength of evidence was moderate to high for all immune mediators listed here. CONCLUSIONS: Despite the variability of cervicovaginal immune mediator measurements, our meta-analyses show clear and consistent changes during the menstrual cycle. Many immune mediators were lower in the luteal phase, including chemokines, antibodies, matrix metalloproteinases, and several interleukins. Only interleukin-1α and beta-defensins were higher in the luteal phase. These cyclical differences may have consequences for immunity, susceptibility to infection, and fertility. Our study emphasizes the need to control for the effect of the menstrual cycle on immune mediators in future studies.


Subject(s)
Elafin , beta-Defensins , Female , Granulocyte Colony-Stimulating Factor , Humans , Immunoglobulins , Immunologic Factors , Interferons , Interleukin 1 Receptor Antagonist Protein , Interleukin-16 , Interleukin-1alpha , Interleukin-6 , Interleukins , Lactoferrin , Menstrual Cycle , Muramidase , Progesterone
7.
STAR Protoc ; 3(4): 101681, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36178789

ABSTRACT

The cross-subtype intact proviral DNA assay (CS-IPDA) is a high-throughput method to quantify HIV reservoir size in populations infected with any of the dominant global HIV-1 subtypes. Our protocol includes genomic DNA isolation optimized to minimize DNA shearing, a reference droplet digital PCR (ddPCR) assay to quantify T cells and assess DNA shearing, and a multiplex ddPCR targeting three distinct regions across the HIV genome to quantify intact proviruses as an estimate of replication-competent proviruses in the reservoir. For complete details on the use and execution of this protocol, please refer to Cassidy et al. (2022).


Subject(s)
HIV Infections , HIV-1 , Humans , Proviruses/genetics , HIV-1/genetics , DNA, Viral/genetics , Polymerase Chain Reaction/methods
8.
iScience ; 25(1): 103615, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35106463

ABSTRACT

A major barrier to conducting HIV cure research in populations with the highest HIV burden is the lack of an accurate assay to quantify the replication-competent reservoir across the dominant global HIV-1 subtypes. Here, we modify a subtype B HIV-1 assay that quantifies both intact and defective proviral DNA, adapting it to accommodate cross-subtype HIV-1 sequence diversity. We show that the cross-subtype assay works on subtypes A, B, C, D, and CRF01_AE and can detect a single copy of intact provirus. In longitudinal blood samples from Kenyan infants infected with subtypes A and D, patterns of intact and total HIV DNA follow the decay of plasma viral load over time during antiretroviral therapy, with intact HIV DNA comprising 7% (range 1%-33%) of the total HIV DNA during HIV RNA suppression. This high-throughput cross-subtype reservoir assay will be useful in HIV cure research in Africa and Asia, where HIV prevalence is highest.

9.
STAR Protoc ; 2(4): 100885, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34693363

ABSTRACT

Most latent human immunodeficiency virus (HIV) proviruses are defective and cannot produce infectious virions. Thus, the number of HIV proviruses with intact genomes is a relevant clinical parameter to assess therapies for HIV cure. We describe high-molecular-weight DNA isolation, followed by restriction enzyme fragmentation that limits cutting within the HIV genome. Multiplexed droplet digital PCR quantifies five targets spanning the HIV genome to estimate potentially intact proviral copies. A reference assay counts the number of T lymphocytes and assesses the level of DNA shearing. For complete details on the use and execution of this protocol, please refer to Levy et al. (2021).


Subject(s)
HIV Infections/virology , HIV-1/genetics , Polymerase Chain Reaction/methods , Proviruses/genetics , Viral Load/methods , DNA, Viral/blood , DNA, Viral/genetics , Genome, Viral/genetics , Humans
10.
Viruses ; 13(8)2021 07 27.
Article in English | MEDLINE | ID: mdl-34452338

ABSTRACT

BACKGROUND: medication-assisted treatment (MAT) with buprenorphine is now widely prescribed to treat addiction to heroin and other illicit opioids. There is some evidence that illicit opioids enhance HIV-1 replication and accelerate AIDS pathogenesis, but the effect of buprenorphine is unknown. METHODS: we obtained peripheral blood mononuclear cells (PBMCs) from healthy volunteers and cultured them in the presence of morphine, buprenorphine, or methadone. We infected the cells with a replication-competent CCR5-tropic HIV-1 reporter virus encoding a secreted nanoluciferase gene, and measured infection by luciferase activity in the supernatants over time. We also surveyed opioid receptor expression in PBMC, genital epithelial cells and other leukocytes by qPCR and western blotting. Reactivation from latency was assessed in J-Lat 11.1 and U1 cell lines. RESULTS: we did not detect expression of classical opioid receptors in leukocytes, but did find nociception/orphanin FQ receptor (NOP) expression in blood and vaginal lymphocytes as well as genital epithelial cells. In PBMCs, we found that at physiological doses, morphine, and methadone had a variable or no effect on HIV infection, but buprenorphine treatment significantly increased HIV-1 infectivity (median: 8.797-fold increase with 20 nM buprenorphine, eight experiments, range: 3.570-691.9, p = 0.0078). Using latently infected cell lines, we did not detect reactivation of latent HIV following treatment with any of the opioid drugs. CONCLUSIONS: our results suggest that buprenorphine, in contrast to morphine or methadone, increases the in vitro susceptibility of leukocytes to HIV-1 infection but has no effect on in vitro HIV reactivation. These findings contribute to our understanding how opioids, including those used for MAT, affect HIV infection and reactivation, and can help to inform the choice of MAT for people living with HIV or who are at risk of HIV infection.


Subject(s)
Buprenorphine/pharmacology , HIV Infections/virology , HIV-1/drug effects , Virus Activation/drug effects , Virus Latency/drug effects , HIV-1/genetics , HIV-1/physiology , Humans , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Methadone/pharmacology , Morphine/pharmacology , Receptors, Opioid/genetics , Receptors, Opioid/metabolism , Virus Replication/drug effects , Nociceptin Receptor
11.
Cell Rep Med ; 2(4): 100243, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33948574

ABSTRACT

Quantifying the replication-competent HIV reservoir is essential for evaluating curative strategies. Viral outgrowth assays (VOAs) underestimate the reservoir because they fail to induce all replication-competent proviruses. Single- or double-region HIV DNA assays overestimate it because they fail to exclude many defective proviruses. We designed two triplex droplet digital PCR assays, each with 2 unique targets and 1 in common, and normalize the results to PCR-based T cell counts. Both HIV assays are specific, sensitive, and reproducible. Together, they estimate the number of proviruses containing all five primer-probe regions. Our 5-target results are on average 12.1-fold higher than and correlate with paired quantitative VOA (Spearman's ρ = 0.48) but estimate a markedly smaller reservoir than previous DNA assays. In patients on antiretroviral therapy, decay rates in blood CD4+ T cells are faster for intact than for defective proviruses, and intact provirus frequencies are similar in mucosal and circulating T cells.


Subject(s)
HIV Infections/genetics , HIV-1/genetics , Polymerase Chain Reaction , Proviruses/genetics , DNA, Viral/analysis , HIV Seropositivity/genetics , Humans , Polymerase Chain Reaction/methods , Viral Load/methods , Virus Latency/genetics
12.
Mucosal Immunol ; 14(4): 862-872, 2021 07.
Article in English | MEDLINE | ID: mdl-33953338

ABSTRACT

Memory CD4 T cells in tissues fulfill numerous functions that are critical for local immune homeostasis and protection against pathogens. Previous studies have highlighted the phenotypic and functional heterogeneity of circulating and tissue-resident memory CD4 T cells across different human tissues such as skin, lung, liver, and colon. Comparatively little is known in regard to memory CD4 T cells across tissues of the female reproductive tract (FRT). We examined CD4 T cells in donor-matched vaginal, ecto- and endocervical tissues, which differ in mucosal structure and exposure to external environmental stimuli. We hypothesized that this could be reflected by tissue-specific differences in the memory CD4 T cell compartment. We found differences in CD4 subset distribution across these tissues. Specifically, CD69+CD103+ CD4 T cells were significantly more abundant in vaginal than cervical tissues. In contrast, the transcriptional profiles of CD4 subsets were fairly conserved across FRT tissues. CD69+CD103+ CD4 T cells showed a TH17 bias independent of tissue niche. Our data suggest that FRT tissues affect T cell subset distribution but have limited effects on the transcriptome of each subset. We discuss the implications for barrier immunity in the FRT.


Subject(s)
Genitalia, Female/physiology , Memory T Cells/immunology , Memory T Cells/metabolism , Antigens, Surface/metabolism , Biomarkers , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Female , Gene Expression Profiling , Humans , Immunologic Memory , Immunophenotyping , Mucous Membrane/immunology , Organ Specificity , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
13.
Am J Reprod Immunol ; 86(2): e13412, 2021 08.
Article in English | MEDLINE | ID: mdl-33641250

ABSTRACT

PROBLEM: Changes in sex hormones during the menstrual cycle and contraceptive vaginal ring (CVR) use influence immunity within the female genital tract, but the magnitude of these effects and their anatomical location are unclear. METHOD OF STUDY: In a prospective study, 29 women were assessed at three-time points: follicular phase, luteal phase, and one month after initiation of the ethinyl estradiol/etonogestrel CVR (NuvaRing®, Merck). We performed microarrays on endocervical cytobrushes and measured immune mediators in cervicovaginal fluid, adjusting for bacterial vaginosis and the presence of blood. We compared these results to public gene expression data from the fallopian tubes, endometrium, endo- and ectocervix, and vagina. RESULTS: Immune-related gene expression in the endocervix and immune mediators in cervicovaginal fluid increased during CVR use versus both menstrual phases, and in the follicular versus luteal phase. The antimicrobial protein granulysin was high during CVR use, intermediate in the follicular phase, and nearly absent from the luteal phase. Re-analysis of public gene expression data confirmed increased immune-related gene expression in the endocervix during the follicular phase. However, in the fallopian tube, endometrium, and vagina, the follicular phase showed immunosuppression. CONCLUSIONS: Immune-related genes in the cervicovaginal tract were highest during CVR use, intermediate in the follicular phase, and lowest in the luteal phase. Granulysin is a potential biomarker of menstrual phase: Frequently detected in follicular samples, but rare in luteal. Lastly, immunological differences between the follicular and luteal phases vary throughout the female genital tract.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/immunology , Contraceptive Agents, Female/administration & dosage , Contraceptive Devices, Female , Desogestrel/administration & dosage , Ethinyl Estradiol/administration & dosage , Immunity, Mucosal/drug effects , Menstrual Cycle , Adult , Female , Humans , Menstrual Cycle/drug effects , Menstrual Cycle/immunology , Middle Aged
14.
Front Oral Health ; 2: 821812, 2021.
Article in English | MEDLINE | ID: mdl-35224539

ABSTRACT

The oral mucosa contains distinct tissue sites with immune niches capable of either immunogenic or tolerogenic responses. However, immune cell compositions within oral mucosal tissues at homeostasis have not been well-characterized in human relevant tissues. Non-human primates (NHP) are a major model for the human immune system and oral anatomy, and therefore improved understanding of NHP oral immune cell populations can provide important insights for studying disease pathologies and developing therapies. Herein, we characterize immune cell types of three sites within the oral cavity (buccal, sublingual, lingual tonsil) sampled by biopsy and cytobrush in pigtail macaques. Tonsil biopsies had more T-cells, dendritic cells (DCs), DC subtypes, and CD4+ T-cells than buccal or sublingual biopsies when normalized by tissue mass. Biopsy proved to collect more immune cells than cytobrushes, however frequencies of CD45+ subpopulations were comparable between methods. Live cells isolated from biopsied tonsils had greater CD45+ leukocyte frequencies (mean 31.6 ± SD 20.4%) than buccal (13.8 ± 4.6%) or sublingual (10.0 ± 5.1%) tissues. T-cells composed more than half of the CD45+ population in sublingual tissue (60.1 ± 9.6%) and the tonsil (54.6 ± 7.5%), but only 31.9 ± 7.2% in buccal samples. CD20+ B-cells composed a greater percentage of CD45+ leukocytes in the tonsil (12.8 ± 9.1%) than buccal (1.2 ± 1.0%) or sublingual tissues (0.8 ± 1.2%). Immune population comparisons are also made between sex and age. These results present an important step for understanding the oral immune environment, oral disease, and site-specific therapy development.

15.
J Control Release ; 329: 782-793, 2021 01 10.
Article in English | MEDLINE | ID: mdl-33035616

ABSTRACT

Dendritic cells (DCs) play a critical role in shaping adaptive immunity. Systemic transfer of DCs by intravenous injection has been widely investigated to inform the development of immunogenic DCs for use as cellular therapies. Adoptive transfer of DCs to mucosal sites has been limited but serves as a valuable tool to understand the role of the microenvironment on mucosal DC activation, maturation and antigen presentation. Here, we show that chitosan facilitates transmigration of DCs across the vaginal epithelium in the mouse female reproductive tract (FRT). In addition, ex vivo programming of DCs with fms-related tyrosine kinase 3 ligand (Flt3-L) was found to enhance translocation of intravaginally administered DCs to draining lymph nodes (dLNs) and stimulate in vivo proliferation of both antigen-specific CD4+ and CD8+ T cells (cross-presentation). Mucosal priming with chitosan and DC programming may hold great promise to enhance efficacy of DC-based vaccination to the female genital mucosa.


Subject(s)
Antigen Presentation , Dendritic Cells , Animals , CD8-Positive T-Lymphocytes , Female , Genitalia , Mice , Mice, Inbred C57BL , Mucous Membrane
16.
Cell Rep Med ; 1(6): 100096, 2020 09 22.
Article in English | MEDLINE | ID: mdl-33015651

ABSTRACT

Tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) are used for HIV treatment and prevention. Previously, we found that topical rectal tenofovir gel caused immunological changes in the mucosa. Here, we assess the effect of oral TDF/FTC in three HIV pre-exposure prophylaxis trials, two with gastrointestinal and one with cervicovaginal biopsies. TDF/FTC induces type I/III interferon-related (IFN I/III) genes in the gastrointestinal tract, but not blood, with strong correlations between the two independent rectal biopsy groups (Spearman r = 0.91) and between the rectum and duodenum (r = 0.81). Gene set testing also indicates stimulation of the type I/III pathways in the ectocervix and of cellular proliferation in the duodenum. mRNA sequencing, digital droplet PCR, proteomics, and immunofluorescence confirm IFN I/III pathway stimulation in the gastrointestinal tract. Thus, oral TDF/FTC stimulates an IFN I/III signature throughout the gut, which could increase antiviral efficacy but also cause chronic immune activation in HIV prevention and treatment settings.


Subject(s)
Gastrointestinal Microbiome/drug effects , HIV/drug effects , Pre-Exposure Prophylaxis/methods , Adult , Anti-HIV Agents/administration & dosage , Anti-Retroviral Agents/therapeutic use , Antiretroviral Therapy, Highly Active/methods , Emtricitabine/administration & dosage , Emtricitabine/pharmacology , Female , Gastrointestinal Microbiome/genetics , Gene Expression/genetics , HIV/metabolism , HIV Infections/drug therapy , HIV Infections/genetics , Humans , Interferon Type I/therapeutic use , Male , Middle Aged , Pharmaceutical Preparations , Tenofovir/administration & dosage , Tenofovir/pharmacology , Transcriptome/drug effects , Transcriptome/genetics
17.
J Virol ; 94(9)2020 04 16.
Article in English | MEDLINE | ID: mdl-32051273

ABSTRACT

Pharmacological HIV-1 reactivation to reverse latent infection has been extensively studied. However, HIV-1 reactivation also occurs naturally, as evidenced by occasional low-level viremia ("viral blips") during antiretroviral treatment (ART). Clarifying where blips originate from and how they happen could provide clues to stimulate latency reversal more effectively and safely or to prevent viral rebound following ART cessation. We studied HIV-1 reactivation in the female genital tract, a dynamic anatomical target for HIV-1 infection throughout all disease stages. We found that primary endocervical epithelial cells from several women reactivated HIV-1 from latently infected T cells. The endocervical cells' HIV-1 reactivation capacity further increased upon Toll-like receptor 3 stimulation with poly(I·C) double-stranded RNA or infection with herpes simplex virus 2 (HSV-2). Notably, acyclovir did not eliminate HSV-2-induced HIV-1 reactivation. While endocervical epithelial cells secreted large amounts of several cytokines and chemokines, especially tumor necrosis factor alpha (TNF-α), CCL3, CCL4, and CCL20, their HIV-1 reactivation capacity was almost completely blocked by TNF-α neutralization alone. Thus, immunosurveillance activities by columnar epithelial cells in the endocervix can cause endogenous HIV-1 reactivation, which may contribute to viral blips during ART or rebound following ART interruption.IMPORTANCE A reason that there is no universal cure for HIV-1 is that the virus can hide in the genome of infected cells in the form of latent proviral DNA. This hidden provirus is protected from antiviral drugs until it eventually reactivates to produce new virions. It is not well understood where in the body or how this reactivation occurs. We studied HIV-1 reactivation in the female genital tract, which is often the portal of HIV-1 entry and which remains a site of infection throughout the disease. We found that the columnar epithelial cells lining the endocervix, the lower part of the uterus, are particularly effective in reactivating HIV-1 from infected T cells. This activity was enhanced by certain microbial stimuli, including herpes simplex virus 2, and blocked by antibodies against the inflammatory cytokine TNF-α. Avoiding HIV-1 reactivation could be important for maintaining a functional HIV-1 cure when antiviral therapy is stopped.


Subject(s)
HIV-1/physiology , Virus Activation/drug effects , Virus Replication/drug effects , Acyclovir/pharmacology , Anti-Retroviral Agents/therapeutic use , Antiviral Agents/pharmacology , CD4-Positive T-Lymphocytes/virology , Cell Line , Cervix Uteri/pathology , Epithelial Cells/pathology , Female , Gene Expression Regulation, Viral/drug effects , HIV Infections/virology , HIV Seropositivity/drug therapy , HIV-1/pathogenicity , Humans , Primary Cell Culture , Viremia/drug therapy , Virus Latency/drug effects , Virus Replication/physiology
18.
PLoS One ; 14(10): e0223901, 2019.
Article in English | MEDLINE | ID: mdl-31622420

ABSTRACT

Human semen contains trillions of extracellular vesicles (SEV) similar in size to sexually transmitted viruses and loaded with potentially bioactive miRNAs, proteins and lipids. SEV were shown to inhibit HIV and Zika virus infectivity, but whether SEV are able also to affect subsequent immune responses is unknown. We found that SEV efficiently bound to and entered antigen-presenting cells (APC) and thus we set out to further dissect the impact of SEV on APC function and the impact on downstream T cell responses. In an APC-T cell co-culture system, SEV exposure to APC alone markedly reduced antigen-specific cytokine production, degranulation and cytotoxicity by antigen-specific memory CD8+ T cells. In contrast, inhibition of CD4+ T cell responses required both APC and T cell exposure to SEV. Surprisingly, SEV did not alter MHC or co-stimulatory receptor expression on APCs, but caused APCs to upregulate indoleamine 2,3 deoxygenase, an enzyme known to indirectly inhibit T cells. Thus, SEV reduce the ability of APCs to activate T cells. We propose here that these immune-inhibitory properties of SEV may be intended to prevent immune responses against semen-derived antigens, but can be hi-jacked by genitally acquired viral infections to compromise adaptive cellular immunity.


Subject(s)
Antigen-Presenting Cells/cytology , Cytokines/metabolism , Extracellular Vesicles/immunology , Semen/cytology , T-Lymphocytes/cytology , Adult , Antigen-Presenting Cells/immunology , CD8-Positive T-Lymphocytes , Cells, Cultured , Coculture Techniques , Healthy Volunteers , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Male , Semen/immunology , T-Lymphocytes/immunology , Young Adult
19.
Mucosal Immunol ; 12(5): 1118-1129, 2019 09.
Article in English | MEDLINE | ID: mdl-31312028

ABSTRACT

The immune system of the cervicovaginal tract (CVT) must balance immunosurveillance and active immunity against pathogens with maintenance of tolerance to resident microbiota and to fetal and partner antigens for reproductive purposes. Thus, we predicted that CVT immunity is characterized by distinctive features compared to blood and other tissue compartments. Indeed, we found that CVT CD8+ T-cells had unique transcriptional profiles, particularly in their cytokine signature, compared to that reported for CD8+ T-cells in other tissue sites. Among these CVT CD8+ T-cells, we identified a CD69- CD103- subset that was characterized by reduced migration in response to tissue-exit signals and higher pro-inflammatory potential as compared to their blood counterpart. These inflammatory mucosal CD8+ T-cells (Tim) were increased in frequency in the CVT of individuals with chronic infection, pointing to a potential role in perpetuating inflammation. Our findings highlight the specialized nature of immunity within the CVT and identify Tim cells as potential therapeutic targets to tame tissue inflammation upon chronic infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cervix Uteri/immunology , Cervix Uteri/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Vagina/immunology , Vagina/metabolism , Adult , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Biomarkers , Cytokines/metabolism , Female , Gene Expression Profiling , Humans , Immunologic Memory , Immunophenotyping , Inflammation Mediators/metabolism , Integrin alpha Chains/metabolism , Lectins, C-Type/metabolism , Lymphocyte Activation , Lymphocyte Count , Mice , Middle Aged , Young Adult
20.
Sci Adv ; 5(3): eaav6322, 2019 03.
Article in English | MEDLINE | ID: mdl-30944862

ABSTRACT

A proposed strategy to cure HIV uses latency-reversing agents (LRAs) to reactivate latent proviruses for purging HIV reservoirs. A variety of LRAs have been identified, but none has yet proven effective in reducing the reservoir size in vivo. Nanocarriers could address some major challenges by improving drug solubility and safety, providing sustained drug release, and simultaneously delivering multiple drugs to target tissues and cells. Here, we formulated hybrid nanocarriers that incorporate physicochemically diverse LRAs and target lymphatic CD4+ T cells. We identified one LRA combination that displayed synergistic latency reversal and low cytotoxicity in a cell model of HIV and in CD4+ T cells from virologically suppressed patients. Furthermore, our targeted nanocarriers selectively activated CD4+ T cells in nonhuman primate peripheral blood mononuclear cells as well as in murine lymph nodes, and substantially reduced local toxicity. This nanocarrier platform may enable new solutions for delivering anti-HIV agents for an HIV cure.


Subject(s)
Anti-HIV Agents/administration & dosage , CD4-Positive T-Lymphocytes/drug effects , HIV Infections/drug therapy , HIV-1/drug effects , Nanostructures/administration & dosage , Virus Latency/drug effects , Animals , Anti-HIV Agents/chemistry , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , Chemical Phenomena , Drug Carriers/chemistry , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , HIV-1/physiology , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Macaca , Mice, Inbred C57BL , Nanostructures/chemistry , Virus Latency/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...