Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Nutrients ; 12(8)2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32824163

ABSTRACT

Knowledge of various aspects of dietary diversity (DD)-an essential healthful dietary component-across adulthood is limited. This study examined three DD aspects over time in racially diverse adults. Participants were from the National Institute on Aging, Healthy Aging in Neighborhoods of Diversity across the Life Span study. DD measures were calculated at baseline (N = 2177), and first and second examination follow-ups (N = 2140 and N = 2066, respectively) using two 24-h recalls. The count was based on the consumption of ≥50% of an equivalent from 21 food groups. Evenness was derived using the Berry-Index adjusted by the food's health value; dissimilarity, by Mahalanobis Distance. Mixed-effects linear regression models were conducted to test changes in DD across adulthood, adjusting for sex, race, poverty status and education as fixed effects, and adjusting for smoking, age and energy as time-dependent variables. Only dissimilarity showed significant interactions of time × race (p = 0.0005), and time × poverty status (p = 0.0325), indicating a slower rate of increase over time in dissimilarity scores among Whites compared with African-Americans and those with income >125% poverty versus <125% poverty. A significant interaction between time×energy (p < 0.0001) was noted for both evenness and dissimilarity scores. To our knowledge, this is the first study to document the differential change in dissimilarity scores by race and income over time.


Subject(s)
Black or African American/statistics & numerical data , Diet/statistics & numerical data , White People/statistics & numerical data , Adult , Educational Status , Female , Healthy Aging , Humans , Income/statistics & numerical data , Male , Middle Aged , Poverty/statistics & numerical data , Race Factors , Residence Characteristics , Smoking/epidemiology , Socioeconomic Factors , United States/epidemiology , Urban Population/statistics & numerical data
2.
Angiogenesis ; 23(2): 179-192, 2020 05.
Article in English | MEDLINE | ID: mdl-31754927

ABSTRACT

Angiogenesis is largely driven by motile endothelial tip-cells capable of invading avascular tissue domains and enabling new vessel formation. Highly responsive to Vascular Endothelial Growth-Factor-A (VEGFA), endothelial tip-cells also suppress angiogenic sprouting in adjacent stalk cells, and thus have been a primary therapeutic focus in addressing neovascular pathologies. Surprisingly, however, there remains a paucity of specific endothelial tip-cell markers. Here, we employ transcriptional profiling and a lacZ reporter allele to identify Kcne3 as an early and selective endothelial tip-cell marker in multiple angiogenic contexts. In development, Kcne3 expression initiates during early phases of angiogenesis (E9) and remains specific to endothelial tip-cells, often adjacent to regions expressing VEGFA. Consistently, Kcne3 activation is highly responsive to exogenous VEGFA but maintains tip-cell specificity throughout normal retinal angiogenesis. We also demonstrate endothelial tip-cell selectivity of Kcne3 in several injury and tumor models. Together, our data show that Kcne3 is a unique marker of sprouting angiogenic tip-cells and offers new opportunities for investigating and targeting this cell type.


Subject(s)
Endothelial Cells/physiology , Neovascularization, Pathologic/genetics , Neovascularization, Physiologic/genetics , Potassium Channels, Voltage-Gated/genetics , Vascular Endothelial Growth Factor A/physiology , Animals , Animals, Newborn , Cell Differentiation/genetics , Cells, Cultured , Diabetic Retinopathy/genetics , Diabetic Retinopathy/pathology , Embryo, Mammalian , Endothelial Cells/pathology , Female , Gene Expression Regulation, Developmental/drug effects , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Morphogenesis/genetics , Neovascularization, Pathologic/metabolism , Pregnancy , Retina/metabolism , Retina/pathology , Retinal Vessels/metabolism , Retinal Vessels/pathology
3.
Am J Hum Genet ; 101(6): 985-994, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29198724

ABSTRACT

Bone morphogenetic protein 2 (BMP2) in chromosomal region 20p12 belongs to a gene superfamily encoding TGF-ß-signaling proteins involved in bone and cartilage biology. Monoallelic deletions of 20p12 are variably associated with cleft palate, short stature, and developmental delay. Here, we report a cranioskeletal phenotype due to monoallelic truncating and frameshift BMP2 variants and deletions in 12 individuals from eight unrelated families that share features of short stature, a recognizable craniofacial gestalt, skeletal anomalies, and congenital heart disease. De novo occurrence and autosomal-dominant inheritance of variants, including paternal mosaicism in two affected sisters who inherited a BMP2 splice-altering variant, were observed across all reported families. Additionally, we observed similarity to the human phenotype of short stature and skeletal anomalies in a heterozygous Bmp2-knockout mouse model, suggesting that haploinsufficiency of BMP2 could be the primary phenotypic determinant in individuals with predicted truncating variants and deletions encompassing BMP2. These findings demonstrate the important role of BMP2 in human craniofacial, skeletal, and cardiac development and confirm that individuals heterozygous for BMP2 truncating sequence variants or deletions display a consistent distinct phenotype characterized by short stature and skeletal and cardiac anomalies without neurological deficits.


Subject(s)
Bone Morphogenetic Protein 2/genetics , Craniofacial Abnormalities/genetics , Developmental Disabilities/genetics , Dwarfism/genetics , Haploinsufficiency/genetics , Heart Defects, Congenital/genetics , Animals , Bone and Bones/embryology , Child , Child, Preschool , Chromosomes, Human, Pair 20/genetics , Cleft Palate/genetics , Disease Models, Animal , Female , Heart/embryology , Humans , Infant , Male , Mice , Mice, Knockout , Transforming Growth Factor beta/genetics
4.
Nat Biotechnol ; 33(1): 14-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25574625
8.
Am J Hum Genet ; 92(5): 725-43, 2013 May 02.
Article in English | MEDLINE | ID: mdl-23643382

ABSTRACT

Congenital hypogonadotropic hypogonadism (CHH) and its anosmia-associated form (Kallmann syndrome [KS]) are genetically heterogeneous. Among the >15 genes implicated in these conditions, mutations in FGF8 and FGFR1 account for ~12% of cases; notably, KAL1 and HS6ST1 are also involved in FGFR1 signaling and can be mutated in CHH. We therefore hypothesized that mutations in genes encoding a broader range of modulators of the FGFR1 pathway might contribute to the genetics of CHH as causal or modifier mutations. Thus, we aimed to (1) investigate whether CHH individuals harbor mutations in members of the so-called "FGF8 synexpression" group and (2) validate the ability of a bioinformatics algorithm on the basis of protein-protein interactome data (interactome-based affiliation scoring [IBAS]) to identify high-quality candidate genes. On the basis of sequence homology, expression, and structural and functional data, seven genes were selected and sequenced in 386 unrelated CHH individuals and 155 controls. Except for FGF18 and SPRY2, all other genes were found to be mutated in CHH individuals: FGF17 (n = 3 individuals), IL17RD (n = 8), DUSP6 (n = 5), SPRY4 (n = 14), and FLRT3 (n = 3). Independently, IBAS predicted FGF17 and IL17RD as the two top candidates in the entire proteome on the basis of a statistical test of their protein-protein interaction patterns to proteins known to be altered in CHH. Most of the FGF17 and IL17RD mutations altered protein function in vitro. IL17RD mutations were found only in KS individuals and were strongly linked to hearing loss (6/8 individuals). Mutations in genes encoding components of the FGF pathway are associated with complex modes of CHH inheritance and act primarily as contributors to an oligogenic genetic architecture underlying CHH.


Subject(s)
Dual Specificity Phosphatase 6/genetics , Fibroblast Growth Factors/genetics , Genetic Predisposition to Disease/genetics , Hypogonadism/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Receptors, Interleukin/genetics , Algorithms , Animals , Base Sequence , Computational Biology , Female , Genetic Association Studies , Humans , Immunohistochemistry , Inheritance Patterns/genetics , Male , Membrane Glycoproteins , Mice , Molecular Sequence Data , Mutation/genetics , Sequence Analysis, DNA , Sequence Homology , Surface Plasmon Resonance
16.
Sci Transl Med ; 4(152): 152ps17, 2012 Sep 19.
Article in English | MEDLINE | ID: mdl-22993293

ABSTRACT

Earlier this year, a diverse group convened at the Jan and Dan Duncan Neurological Research Institute and Baylor College of Medicine to discuss research on neurodevelopmental disorders involving the synapse. Participants discussed current challenges in the field and made recommendations for future research directions.


Subject(s)
Nervous System Diseases/pathology , Nervous System/growth & development , Nervous System/pathology , Synapses/pathology , Child , Humans , Practice Guidelines as Topic
20.
J Clin Endocrinol Metab ; 97(1): E136-44, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22072740

ABSTRACT

CONTEXT: The olfactory phenotype in patients with idiopathic hypogonadotropic hypogonadism (IHH) ranges from complete anosmia (Kallmann syndrome) to normosmia (normosmic IHH). However, the true prevalence of intermediary olfactory phenotypes (hyposmia) in IHH patients has not yet been assessed, and systematic correlations with anatomical and genetic abnormalities have not been reported. OBJECTIVE: The objective of this study was to evaluate olfactory function in a large IHH cohort and correlate these findings with olfactory magnetic resonance imaging (MRI) and underlying genetic etiology. DESIGN AND SETTING: We conducted a cross-sectional case-control study at an academic referral center. PATIENTS: A total of 286 IHH patients (201 males and 85 females) and 2183 healthy historic controls (1011 males and 1172 females) were studied. MAIN OUTCOME MEASURES: We measured olfactory function using the University of Pennsylvania Smell Identification Test; in 208 subjects, the genetic etiology of IHH was ascertained by DNA sequencing; in a minor subset [39 of 286 subjects (13%)], olfactory structures were determined by MRI. RESULTS: In the IHH cohort, 31.5% were anosmic, 33.6% were hyposmic, and 34.9% were normosmic. Most hyposmic (seven of 11) subjects with MRI data exhibited olfactory structure abnormalities. Of hyposmic subjects, 39.5% harbored mutations in genes involved in either GnRH neuronal migration or GnRH secretion. CONCLUSIONS: IHH subjects display a broad spectrum of olfactory function, with a significant hyposmic phenotype in nearly one third of subjects. The hyposmic subjects harbor mutations in genes affecting GnRH neuronal migration and its secretion, suggesting a pathophysiological overlap between Kallmann syndrome and normosmic IHH. Accurate olfactory phenotyping in IHH subjects will inform the pathophysiology of this condition and guide genetic testing.


Subject(s)
Hypogonadism/complications , Olfaction Disorders/classification , Olfaction Disorders/etiology , Olfaction Disorders/genetics , Adolescent , Adult , Case-Control Studies , Cohort Studies , Cross-Sectional Studies , Female , Humans , Hypogonadism/genetics , Hypogonadism/physiopathology , Kallmann Syndrome/etiology , Kallmann Syndrome/genetics , Kallmann Syndrome/physiopathology , Male , Middle Aged , Olfaction Disorders/diagnosis , Olfactory Pathways/physiopathology , Phenotype , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...