Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 35(27)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38373400

ABSTRACT

DNA Nanotechnology is being applied to multiple research fields. The functionality of DNA nanostructures is significantly enhanced by decorating them with nanoscale moieties including: proteins, metallic nanoparticles, quantum dots, and chromophores. Decoration is a complex process and developing protocols for reliable attachment routinely requires extensive trial and error. Additionally, the granular nature of scientific communication makes it difficult to discern general principles in DNA nanostructure decoration. This tutorial is a guidebook designed to minimize experimental bottlenecks and avoid dead-ends for those wishing to decorate DNA nanostructures. We supplement the reference material on available technical tools and procedures with a conceptual framework required to make efficient and effective decisions in the lab. Together these resources should aid both the novice and the expert to develop and execute a rapid, reliable decoration protocols.


Subject(s)
DNA , Nanostructures , Nanotechnology , DNA/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Quantum Dots/chemistry , Metal Nanoparticles/chemistry
2.
Commun Chem ; 6(1): 226, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853171

ABSTRACT

Networks of interacting DNA oligomers are useful for applications such as biomarker detection, targeted drug delivery, information storage, and photonic information processing. However, differences in the chemical kinetics of hybridization reactions, referred to as kinetic dispersion, can be problematic for some applications. Here, it is found that limiting unnecessary stretches of Watson-Crick base pairing, referred to as unnecessary duplexes, can yield exceptionally low kinetic dispersions. Hybridization kinetics can be affected by unnecessary intra-oligomer duplexes containing only 2 base-pairs, and such duplexes explain up to 94% of previously reported kinetic dispersion. As a general design rule, it is recommended that unnecessary intra-oligomer duplexes larger than 2 base-pairs and unnecessary inter-oligomer duplexes larger than 7 base-pairs be avoided. Unnecessary duplexes typically scale exponentially with network size, and nearly all networks contain unnecessary duplexes substantial enough to affect hybridization kinetics. A new method for generating networks which utilizes in-silico optimization to mitigate unnecessary duplexes is proposed and demonstrated to reduce in-vitro kinetic dispersions as much as 96%. The limitations of the new design rule and generation method are evaluated in-silico by creating new oligomers for several designs, including three previously programmed reactions and one previously engineered structure.

3.
BMC Bioinformatics ; 24(1): 160, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37085766

ABSTRACT

Deoxyribonucleic acid (DNA) is emerging as an alternative archival memory technology. Recent advancements in DNA synthesis and sequencing have both increased the capacity and decreased the cost of storing information in de novo synthesized DNA pools. In this survey, we review methods for translating digital data to and/or from DNA molecules. An emphasis is placed on methods which have been validated by storing and retrieving real-world data via in-vitro experiments.


Subject(s)
DNA , DNA/genetics , Sequence Analysis, DNA/methods
4.
Nat Mater ; 20(9): 1173-1174, 2021 09.
Article in English | MEDLINE | ID: mdl-34433934
5.
ACS Nano ; 15(7): 11597-11606, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34137595

ABSTRACT

To bring real-world applications of DNA nanostructures to fruition, advanced microscopy techniques are needed to shed light on factors limiting the availability of addressable sites. Correlative microscopy, where two or more microscopies are combined to characterize the same sample, is an approach to overcome the limitations of individual techniques, yet it has seen limited use for DNA nanotechnology. We have developed an accessible strategy for high resolution, correlative DNA-based points accumulation for imaging in nanoscale topography (DNA-PAINT) super-resolution and atomic force microscopy (AFM) of DNA nanostructures, enabled by a simple and robust method to selectively bind DNA origami to cover glass. Using this technique, we examined addressable "docking" sites on DNA origami to distinguish between two defect scenarios-structurally incorporated but inactive docking sites, and unincorporated docking sites. We found that over 75% of defective docking sites were incorporated but inactive, suggesting unincorporated strands played a minor role in limiting the availability of addressable sites. We further explored the effects of strand purification, UV irradiation, and photooxidation on availability, providing insight on potential sources of defects and pathways toward improving the fidelity of DNA nanostructures.


Subject(s)
Nanostructures , Microscopy, Atomic Force/methods , Nanostructures/chemistry , DNA/chemistry , Nanotechnology/methods , Nucleic Acid Conformation
6.
Nat Commun ; 12(1): 2371, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888693

ABSTRACT

DNA is a compelling alternative to non-volatile information storage technologies due to its information density, stability, and energy efficiency. Previous studies have used artificially synthesized DNA to store data and automated next-generation sequencing to read it back. Here, we report digital Nucleic Acid Memory (dNAM) for applications that require a limited amount of data to have high information density, redundancy, and copy number. In dNAM, data is encoded by selecting combinations of single-stranded DNA with (1) or without (0) docking-site domains. When self-assembled with scaffold DNA, staple strands form DNA origami breadboards. Information encoded into the breadboards is read by monitoring the binding of fluorescent imager probes using DNA-PAINT super-resolution microscopy. To enhance data retention, a multi-layer error correction scheme that combines fountain and bi-level parity codes is used. As a prototype, fifteen origami encoded with 'Data is in our DNA!\n' are analyzed. Each origami encodes unique data-droplet, index, orientation, and error-correction information. The error-correction algorithms fully recover the message when individual docking sites, or entire origami, are missing. Unlike other approaches to DNA-based data storage, reading dNAM does not require sequencing. As such, it offers an additional path to explore the advantages and disadvantages of DNA as an emerging memory material.


Subject(s)
DNA, Single-Stranded/chemistry , Information Storage and Retrieval/methods , Nanostructures/chemistry , Nanotechnology/methods , Algorithms , Nucleic Acid Conformation , Proof of Concept Study
7.
Int J Mol Sci ; 19(9)2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30149587

ABSTRACT

DNA nanostructures routinely self-assemble with sub-10 nm feature sizes. This capability has created industry interest in using DNA as a lithographic mask, yet with few exceptions, solution-based deposition of DNA nanostructures has remained primarily academic to date. En route to controlled adsorption of DNA patterns onto manufactured substrates, deposition and placement of DNA origami has been demonstrated on chemically functionalized silicon substrates. While compelling, chemical functionalization adds fabrication complexity that limits mask efficiency and hence industry adoption. As an alternative, we developed an ion implantation process that tailors the surface potential of silicon substrates to facilitate adsorption of DNA nanostructures without the need for chemical functionalization. Industry standard 300 mm silicon wafers were processed, and we showed controlled adsorption of DNA origami onto boron-implanted silicon patterns; selective to a surrounding silicon oxide matrix. The hydrophilic substrate achieves very high surface selectivity by exploiting pH-dependent protonation of silanol-groups on silicon dioxide (SiO2), across a range of solution pH values and magnesium chloride (MgCl2) buffer concentrations.


Subject(s)
Boron/chemistry , DNA/chemistry , Silicon/chemistry , Chemical Phenomena , Microscopy, Atomic Force , Nanostructures/chemistry , Nanotechnology , Silicon Dioxide/chemistry
8.
Sci Rep ; 7(1): 7382, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28785065

ABSTRACT

DNA nanostructures represent the confluence of materials science, computer science, biology, and engineering. As functional assemblies, they are capable of performing mechanical and chemical work. In this study, we demonstrate global twisting of DNA nanorails made from two DNA origami six-helix bundles. Twisting was controlled using ethidium bromide or SYBR Green I as model intercalators. Our findings demonstrate that DNA nanorails: (i) twist when subjected to intercalators and the amount of twisting is concentration dependent, and (ii) twisting saturates at elevated concentrations. This study provides insight into how complex DNA structures undergo conformational changes when exposed to intercalators and may be of relevance when exploring how intercalating drugs interact with condensed biological structures such as chromatin and chromosomes, as well as chromatin analogous gene expression devices.


Subject(s)
DNA/chemical synthesis , Intercalating Agents/chemistry , Nanostructures/chemistry , Benzothiazoles , DNA/chemistry , Diamines , Ethidium/chemistry , Models, Molecular , Nucleic Acid Conformation , Organic Chemicals/chemistry , Quinolines
9.
ACS Synth Biol ; 6(10): 1800-1806, 2017 10 20.
Article in English | MEDLINE | ID: mdl-28657718

ABSTRACT

Self-assembled nucleic acids perform biological, chemical, and mechanical work at the nanoscale. DNA-based molecular machines have been designed here to perform work by reacting with cancer-specific miRNA mimics and then regulating gene expression in vitro by tuning RNA polymerase activity. Because RNA production is topologically restrained, the machines demonstrate chromatin analogous gene expression (CAGE). With modular and tunable design features, CAGE has potential for molecular biology, synthetic biology, and personalized medicine applications.


Subject(s)
DNA/genetics , MicroRNAs/genetics , Chromatin/genetics , Gene Expression/genetics , Synthetic Biology/methods
10.
Nanoscale ; 9(29): 10205-10211, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28489095

ABSTRACT

Recent results in the assembly of DNA into structures and arrays with nanoscale features and patterns have opened the possibility of using DNA for sub-10 nm lithographic patterning of semiconductor devices. Super-resolution microscopy is being actively developed for DNA-based imaging and is compatible with inline optical metrology techniques for high volume manufacturing. Here, we combine DNA tile assembly with state-dependent super-resolution microscopy to introduce crystal-PAINT as a novel approach for metrology of DNA arrays. Using this approach, we demonstrate optical imaging and characterization of DNA arrays revealing grain boundaries and the temperature dependence of array quality. For finite arrays, analysis of crystal-PAINT images provides further quantitative information of array properties. This metrology approach enables defect detection and classification and facilitates statistical analysis of self-assembled DNA nanostructures.


Subject(s)
DNA/chemistry , Microscopy , Nanostructures/chemistry , Oligonucleotide Array Sequence Analysis , Optical Imaging
11.
J Am Chem Soc ; 139(18): 6363-6368, 2017 05 10.
Article in English | MEDLINE | ID: mdl-28436649

ABSTRACT

Nonenzymatic catalytic substrates have been engineered using toehold-mediated DNA strand displacement, and their programmable applications range from medical diagnosis to molecular computation. However, the complexity, stability, scalability, and sensitivity of those systems are plagued by network leakage. A novel way to suppress leakage is to increase its energy barrier through four-way branch migration. Presented here, we designed multi-arm junction substrates that simultaneously exploit four-way branch migration, with a high-energy barrier to minimize leakage, and three-way branch migration, with a low-energy barrier to maximize catalysis. Original feed forward, autocatalytic, and cross-catalytic systems have been designed with polynomial and exponential amplification that exhibit the modularity of linear substrates and the stability of hairpin substrates, creating a new phase space for synthetic biologist, biotechnologist, and DNA nanotechnologists to explore. A key insight is that high-performing circuits can be engineered in the absence of intensive purification and/or extensive rounds of design optimization. Without adopting established leakage suppression techniques, the ratio of the catalytic rate constant to the leakage rate constant is more than 2 orders of magnitude greater than state-of-the-art linear and hairpin substrates. Our results demonstrate that multi-arm junctions have great potential to become central building blocks in dynamic DNA nanotechnology.


Subject(s)
DNA/chemistry , Nanotechnology , Thermodynamics
12.
J Phys Chem B ; 121(12): 2594-2602, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28256835

ABSTRACT

Locked nucleic acids (LNAs) are conformationally restricted RNA nucleotides. Their increased thermal stability and selectivity toward their complements make them well-suited for diagnostic and therapeutic applications. Although the structural and thermodynamic properties of LNA-LNA, LNA-RNA, and LNA-DNA hybridizations are known, the kinetic effects of incorporating LNA nucleotides into DNA strand displacement systems are not. Here, we thoroughly studied the strand displacement kinetics as a function of the number and position of LNA nucleotides in DNA oligonucleotides. When compared to that of an all-DNA control, with an identical sequence, the leakage rate constant was reduced more than 50-fold, to an undetectable level, and the invasion rate was preserved for a hybrid DNA/LNA system. The total performance enhancement ratio also increased more than 70-fold when calculating the ratio of the invading rate to the leakage rate constants for a hybrid system. The rational substitution of LNA nucleotides for DNA nucleotides preserves sequence space while improving the signal-to-noise ratio of strand displacement systems. Hybrid DNA/LNA systems offer great potential for high-performance chemical reaction networks that include catalyzed hairpin assemblies, hairpin chain reactions, motors, walkers, and seesaw gates.


Subject(s)
DNA/chemistry , Oligonucleotides/chemistry , Kinetics , Models, Molecular , Nucleic Acid Conformation
13.
MRS Bull ; 42(12): 951-959, 2017 Dec.
Article in English | MEDLINE | ID: mdl-31485100

ABSTRACT

Structural DNA nanotechnology is revolutionizing the ways researchers construct arbitrary shapes and patterns in two and three dimensions on the nanoscale. Through Watson-Crick base pairing, DNA can be programmed to form nanostructures with high predictability, addressability, and yield. The ease with which structures can be designed and created has generated great interest for using DNA for a variety of metrology applications, such as in scanning probe microscopy and super-resolution imaging. An additional advantage of the programmable nature of DNA is that mechanisms for nanoscale metrology of the structures can be integrated within the DNA objects by design. This programmable structure-property relationship provides a powerful tool for developing nanoscale materials and smart rulers.

14.
Article in English | MEDLINE | ID: mdl-31543931

ABSTRACT

The global demand for digital data is projected to be greater than the supply of semiconductor grade silicon in 2040 [1]. When combined with the need to archive information [2], nucleic acids are being explored as an alternative memory material [1-7]. According to a recent study, the information density of nucleic acid memory (NAM) is 1000 times greater than flash memory and has the ability to last for hundreds of years [1]. Presented here is an algorithm for converting digital data into unique DNA sequences for glacial storage. Biologically inspired, our coding scheme maps hexadecimal characters to sequences of three DNA nucleotides. This mapping avoids repeating sequences and start codons, which could have adverse effects. We were able to encode and decode various file types without error.

15.
ACS Synth Biol ; 6(1): 84-93, 2017 01 20.
Article in English | MEDLINE | ID: mdl-26875531

ABSTRACT

DNA strand displacement systems have transformative potential in synthetic biology. While powerful examples have been reported in DNA nanotechnology, such systems are plagued by leakage, which limits network stability, sensitivity, and scalability. An approach to mitigate leakage in DNA nanotechnology, which is applicable to synthetic biology, is to introduce mismatches to complementary fuel sequences at key locations. However, this method overlooks nuances in the secondary structure of the fuel and substrate that impact the leakage reaction kinetics in strand displacement systems. In an effort to quantify the impact of secondary structure on leakage, we introduce the concepts of availability and mutual availability and demonstrate their utility for network analysis. Our approach exposes vulnerable locations on the substrate and quantifies the secondary structure of fuel strands. Using these concepts, a 4-fold reduction in leakage has been achieved. The result is a rational design process that efficiently suppresses leakage and provides new insight into dynamic nucleic acid networks.


Subject(s)
DNA/chemistry , Base Pair Mismatch , Computers, Molecular , DNA/genetics , DNA/metabolism , Kinetics , Nanotechnology , Nucleic Acid Conformation , Nucleic Acid Hybridization , Synthetic Biology
17.
Nanoscale ; 7(23): 10382-90, 2015 Jun 21.
Article in English | MEDLINE | ID: mdl-25959862

ABSTRACT

DNA nanotechnology holds the potential for enabling new tools for biomedical engineering, including diagnosis, prognosis, and therapeutics. However, applications for DNA devices are thought to be limited by rapid enzymatic degradation in serum and blood. Here, we demonstrate that a key aspect of DNA nanotechnology-programmable molecular shape-plays a substantial role in device lifetimes. These results establish the ability to operate synthetic DNA devices in the presence of endogenous enzymes and challenge the textbook view of near instantaneous degradation.


Subject(s)
Computers, Molecular , DNA/chemistry , DNA/ultrastructure , Serum/chemistry , Spectrometry, Fluorescence/methods , Humans , Nanotechnology/methods , Nucleic Acid Conformation
18.
ACS Photonics ; 2(3): 398-404, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25839049

ABSTRACT

A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems.

19.
Nanoscale ; 6(22): 13928-38, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25311051

ABSTRACT

High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities.


Subject(s)
DNA/chemistry , Metal Nanoparticles/chemistry , Microarray Analysis/instrumentation , Nanotubes/chemistry , Binding Sites , DNA/metabolism , Gold/chemistry , Microarray Analysis/statistics & numerical data , Microscopy, Atomic Force , Microtechnology/methods , Nanotechnology/methods , Nucleic Acid Conformation , Particle Size , Probability , Static Electricity , Surface Properties
20.
Nano Lett ; 13(8): 3850-6, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23841957

ABSTRACT

DNA origami templated self-assembly has shown its potential in creating rationally designed nanophotonic devices in a parallel and repeatable manner. In this investigation, we employ a multiscaffold DNA origami approach to fabricate linear waveguides of 10 nm diameter gold nanoparticles. This approach provides independent control over nanoparticle separation and spatial arrangement. The waveguides were characterized using atomic force microscopy and far-field polarization spectroscopy. This work provides a path toward large-scale plasmonic circuitry.


Subject(s)
DNA/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...