Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Emerg Infect Dis ; 30(6): 1193-1202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781931

ABSTRACT

Chronic wasting disease (CWD) is a cervid prion disease with unknown zoonotic potential that might pose a risk to humans who are exposed. To assess the potential of CWD to infect human neural tissue, we used human cerebral organoids with 2 different prion genotypes, 1 of which has previously been associated with susceptibility to zoonotic prion disease. We exposed organoids from both genotypes to high concentrations of CWD inocula from 3 different sources for 7 days, then screened for infection periodically for up to 180 days. No de novo CWD propagation or deposition of protease-resistant forms of human prions was evident in CWD-exposed organoids. Some persistence of the original inoculum was detected, which was equivalent in prion gene knockout organoids and thus not attributable to human prion propagation. Overall, the unsuccessful propagation of CWD in cerebral organoids supports a strong species barrier to transmission of CWD prions to humans.


Subject(s)
Organoids , Prions , Wasting Disease, Chronic , Wasting Disease, Chronic/transmission , Humans , Prions/metabolism , Animals , Brain/pathology , Genotype
2.
PLoS Pathog ; 20(4): e1012175, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38640117

ABSTRACT

Prions or prion-like aggregates such as those composed of PrP, α-synuclein, and tau are key features of proteinopathies such as prion, Parkinson's and Alzheimer's diseases, respectively. Their presence on solid surfaces may be biohazardous under some circumstances. PrP prions bound to solids are detectable by ultrasensitive real-time quaking-induced conversion (RT-QuIC) assays if the solids can be immersed in assay wells or the prions transferred to pads. Here we show that prion-like seeds can remain detectable on steel wires for at least a year, or even after enzymatic cleaning and sterilization. We also show that contamination of larger objects with pathological seeds of α-synuclein, tau, and PrP can be detected by simply assaying a sampling medium that has been transiently applied to the surface. Human α-synuclein seeds in dementia with Lewy bodies brain tissue were detected by α-synuclein RT-QuIC after drying of tissue dilutions with concentrations as low as 10-6 onto stainless steel. Tau RT-QuIC detected tau seeding activity on steel exposed to Alzheimer's disease brain tissue diluted as much as a billion fold. Prion RT-QuIC assays detected seeding activity on plates exposed to brain dilutions as extreme as 10-5-10-8 from prion-affected humans, sheep, cattle and cervids. Sampling medium collected from surgical instruments used in necropsies of sporadic Creutzfeldt-Jakob disease-infected transgenic mice was positive down to 10-6 dilution. Sensitivity for prion detection was not sacrificed by omitting the recombinant PrP substrate from the sampling medium during its application to a surface and subsequent storage as long as the substrate was added prior to performing the assay reaction. Our findings demonstrate practical prototypic surface RT-QuIC protocols for the highly sensitive detection of pathologic seeds of α-synuclein, tau, and PrP on solid objects.


Subject(s)
Prion Proteins , alpha-Synuclein , tau Proteins , tau Proteins/metabolism , alpha-Synuclein/metabolism , alpha-Synuclein/analysis , Humans , Prion Proteins/metabolism , Animals , Mice , Brain/metabolism , Brain/pathology , Prions/metabolism , Lewy Body Disease/metabolism
3.
Acta Neuropathol ; 147(1): 17, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231266

ABSTRACT

Definitive diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) relies on the examination of brain tissues for the pathological prion protein (PrPSc). Our previous study revealed that PrPSc-seeding activity (PrPSc-SA) is detectable in skin of sCJD patients by an ultrasensitive PrPSc seed amplification assay (PrPSc-SAA) known as real-time quaking-induced conversion (RT-QuIC). A total of 875 skin samples were collected from 2 cohorts (1 and 2) at autopsy from 2-3 body areas of 339 cases with neuropathologically confirmed prion diseases and non-sCJD controls. The skin samples were analyzed for PrPSc-SA by RT-QuIC assay. The results were compared with demographic information, clinical manifestations, cerebrospinal fluid (CSF) PrPSc-SA, other laboratory tests, subtypes of prion diseases defined by the methionine (M) or valine (V) polymorphism at residue 129 of PrP, PrPSc types (#1 or #2), and gene mutations in deceased patients. RT-QuIC assays of the cohort #1 by two independent laboratories gave 87.3% or 91.3% sensitivity and 94.7% or 100% specificity, respectively. The cohort #2 showed sensitivity of 89.4% and specificity of 95.5%. RT-QuIC of CSF available from 212 cases gave 89.7% sensitivity and 94.1% specificity. The sensitivity of skin RT-QuIC was subtype dependent, being highest in sCJDVV1-2 subtype, followed by VV2, MV1-2, MV1, MV2, MM1, MM1-2, MM2, and VV1. The skin area next to the ear gave highest sensitivity, followed by lower back and apex of the head. Although no difference in brain PrPSc-SA was detected between the cases with false negative and true positive skin RT-QuIC results, the disease duration was significantly longer with the false negatives [12.0 ± 13.3 (months, SD) vs. 6.5 ± 6.4, p < 0.001]. Our study validates skin PrPSc-SA as a biomarker for the detection of prion diseases, which is influenced by the PrPSc types, PRNP 129 polymorphisms, dermatome sampled, and disease duration.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Humans , Prions/genetics , Prion Diseases/diagnosis , Prion Diseases/genetics , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/genetics , Biomarkers
4.
PLoS One ; 18(8): e0290325, 2023.
Article in English | MEDLINE | ID: mdl-37616303

ABSTRACT

Prion diseases are transmissible, fatal neurologic diseases that include Creutzfeldt-Jakob Disease (CJD) in humans, chronic wasting disease (CWD) in cervids, bovine spongiform encephalopathy (BSE) in cattle and scrapie in sheep. Prions are extremely difficult to inactivate and established methods to reduce prion infectivity are often dangerous, caustic, expensive, or impractical. Identifying viable and safe methods for treating prion contaminated materials is important for hospitals, research facilities, biologists, hunters, and meat-processors. For three decades, some prion researchers have used a phenolic product called Environ LpH (eLpH) to inactivate prions. ELpH has been discontinued, but a similar product, Wex-cide 128, containing the similar phenolic chemicals as eLpH is now available. In the current study, we directly compared the anti-prion efficacy of eLpH and Wex-cide 128 against prions from four different species (hamster 263K, cervid CWD, mouse 22L and human CJD). Decontamination was performed on either prion infected brain homogenates or prion contaminated steel wires and mouse bioassay was used to quantify the remaining prion infectivity. Our data show that both eLpH and Wex-cide 128 removed 4.0-5.5 logs of prion infectivity from 22L, CWD and 263K prion homogenates, but only about 1.25-1.50 logs of prion infectivity from human sporadic CJD. Wex-cide 128 is a viable substitute for inactivation of most prions from most species, but the resistance of CJD to phenolic inactivation is a concern and emphasizes the fact that inactivation methods should be confirmed for each target prion strain.


Subject(s)
Creutzfeldt-Jakob Syndrome , Deer , Disinfectants , Prions , Scrapie , Sprains and Strains , Cricetinae , Humans , Animals , Cattle , Mice , Sheep , Brain , Disinfectants/pharmacology , Phenols
5.
PLoS Pathog ; 19(6): e1011456, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37390080

ABSTRACT

Abnormal deposition of α-synuclein is a key feature and biomarker of Parkinson's disease. α-Synuclein aggregates can propagate themselves by a prion-like seeding-based mechanism within and between tissues and are hypothesized to move between the intestine and brain. α-Synuclein RT-QuIC seed amplification assays have detected Parkinson's-associated α-synuclein in multiple biospecimens including post-mortem colon samples. Here we show intra vitam detection of seeds in duodenum biopsies from 22/23 Parkinson's patients, but not in 6 healthy controls by RT-QuICR. In contrast, no tau seeding activity was detected in any of the biopsies. Our seed amplifications provide evidence that the upper intestine contains a form(s) of α-synuclein with self-propagating activity. The diagnostic sensitivity and specificity for PD in this biopsy panel were 95.7% and 100% respectively. End-point dilution analysis indicated up to 106 SD50 seeding units per mg of tissue with positivity in two contemporaneous biopsies from individual patients suggesting widespread distribution within the superior and descending parts of duodenum. Our detection of α-synuclein seeding activity in duodenum biopsies of Parkinson's disease patients suggests not only that such analyses may be useful in ante-mortem diagnosis, but also that the duodenum may be a source or a destination for pathological, self-propagating α-synuclein assemblies.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , alpha-Synuclein , Biopsy , Intestines , Duodenum
6.
Acta Neuropathol ; 146(1): 31-50, 2023 07.
Article in English | MEDLINE | ID: mdl-37154939

ABSTRACT

Tau neurofibrillary tangles are a hallmark of Alzheimer's disease neuropathological change. However, it remains largely unclear how distinctive Alzheimer's disease tau seeds (i.e. 3R/4R) correlate with histological indicators of tau accumulation. Furthermore, AD tau co-pathology is thought to influence features and progression of other neurodegenerative diseases including Lewy body disease; yet measurements of different types of tau seeds in the setting of such diseases is an unmet need. Here, we use tau real-time quaking-induced conversion (RT-QuIC) assays to selectively quantitate 3R/4R tau seeds in the frontal lobe which accumulates histologically identifiable tau pathology at late disease stages of AD neuropathologic change. Seed quantitation across a spectrum of neurodegenerative disease cases and controls indicated tau seeding activity can be detected well before accompanying histopathological indication of tau deposits, and even prior to the earliest evidence of Alzheimer's-related tau accumulation anywhere in the brain. In later stages of AD, 3R/4R tau RT-QuIC measures correlated with immunohistochemical tau burden. In addition, Alzheimer's tau seeds occur in the vast majority of cases evaluated here inclusive of primary synucleinopathies, frontotemporal lobar degeneration and even controls albeit at multi-log lower levels than Alzheimer's cases. α-synuclein seeding activity confirmed synucleinopathy cases and further indicated the co-occurrence of α-synuclein seeds in some Alzheimer's disease and primary tauopathy cases. Our analysis indicates that 3R/4R tau seeds in the mid-frontal lobe correlate with the overall Braak stage and Alzheimer's disease neuropathologic change, supporting the quantitative predictive value of tau RT-QuIC assays. Our data also indicate 3R/4R tau seeds are elevated in females compared to males at high (≥ IV) Braak stages. This study suggests 3R/4R tau seeds are widespread even prior to the earliest stages of Alzheimer's disease changes, including in normal, and even young individuals, with prevalence across multiple neurodegenerative diseases to further define disease subtypes.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Synucleinopathies , Tauopathies , Female , Humans , Male , alpha-Synuclein , Alzheimer Disease/pathology , tau Proteins , Tauopathies/pathology
7.
Brain ; 146(6): 2570-2583, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36975162

ABSTRACT

Human prion diseases are remarkable for long incubation times followed typically by rapid clinical decline. Seed amplification assays and neurodegeneration biofluid biomarkers are remarkably useful in the clinical phase, but their potential to predict clinical onset in healthy people remains unclear. This is relevant not only to the design of preventive strategies in those at-risk of prion diseases, but more broadly, because prion-like mechanisms are thought to underpin many neurodegenerative disorders. Here, we report the accrual of a longitudinal biofluid resource in patients, controls and healthy people at risk of prion diseases, to which ultrasensitive techniques such as real-time quaking-induced conversion (RT-QuIC) and single molecule array (Simoa) digital immunoassays were applied for preclinical biomarker discovery. We studied 648 CSF and plasma samples, including 16 people who had samples taken when healthy but later developed inherited prion disease (IPD) ('converters'; range from 9.9 prior to, and 7.4 years after onset). Symptomatic IPD CSF samples were screened by RT-QuIC assay variations, before testing the entire collection of at-risk samples using the most sensitive assay. Glial fibrillary acidic protein (GFAP), neurofilament light (NfL), tau and UCH-L1 levels were measured in plasma and CSF. Second generation (IQ-CSF) RT-QuIC proved 100% sensitive and specific for sporadic Creutzfeldt-Jakob disease (CJD), iatrogenic and familial CJD phenotypes, and subsequently detected seeding activity in four presymptomatic CSF samples from three E200K carriers; one converted in under 2 months while two remain asymptomatic after at least 3 years' follow-up. A bespoke HuPrP P102L RT-QuIC showed partial sensitivity for P102L disease. No compatible RT-QuIC assay was discovered for classical 6-OPRI, A117V and D178N, and these at-risk samples tested negative with bank vole RT-QuIC. Plasma GFAP and NfL, and CSF NfL levels emerged as proximity markers of neurodegeneration in the typically slow IPDs (e.g. P102L), with significant differences in mean values segregating healthy control from IPD carriers (within 2 years to onset) and symptomatic IPD cohorts; plasma GFAP appears to change before NfL, and before clinical conversion. In conclusion, we show distinct biomarker trajectories in fast and slow IPDs. Specifically, we identify several years of presymptomatic seeding positivity in E200K, a new proximity marker (plasma GFAP) and sequential neurodegenerative marker evolution (plasma GFAP followed by NfL) in slow IPDs. We suggest a new preclinical staging system featuring clinical, seeding and neurodegeneration aspects, for validation with larger prion at-risk cohorts, and with potential application to other neurodegenerative proteopathies.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Humans , tau Proteins/metabolism , Biomarkers
8.
Acta Neuropathol Commun ; 11(1): 28, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36788566

ABSTRACT

Human cerebral organoids (COs) are three-dimensional self-organizing cultures of cerebral brain tissue differentiated from induced pluripotent stem cells. We have recently shown that COs are susceptible to infection with different subtypes of Creutzfeldt-Jakob disease (CJD) prions, which in humans cause different manifestations of the disease. The ability to study live human brain tissue infected with different CJD subtypes opens a wide array of possibilities from differentiating mechanisms of cell death and identifying neuronal selective vulnerabilities to testing therapeutics. However, the question remained as to whether the prions generated in the CO model truly represent those in the infecting inoculum. Mouse models expressing human prion protein are commonly used to characterize human prion disease as they reproduce many of the molecular and clinical phenotypes associated with CJD subtypes. We therefore inoculated these mice with COs that had been infected with two CJD subtypes (MV1 and MV2) to see if the original subtype characteristics (referred to as strains once transmitted into a model organism) of the infecting prions were maintained in the COs when compared with the original human brain inocula. We found that disease characteristics caused by the molecular subtype of the disease associated prion protein were similar in mice inoculated with either CO derived material or human brain material, demonstrating that the disease associated prions generated in COs shared strain characteristics with those in humans. As the first and only in vitro model of human neurodegenerative disease that can faithfully reproduce different subtypes of prion disease, these findings support the use of the CO model for investigating human prion diseases and their subtypes.


Subject(s)
Creutzfeldt-Jakob Syndrome , Neurodegenerative Diseases , Prion Diseases , Prions , Humans , Mice , Animals , Creutzfeldt-Jakob Syndrome/metabolism , Mice, Transgenic , Prion Proteins/genetics , Prion Proteins/metabolism , Neurodegenerative Diseases/metabolism , Brain/metabolism , Prions/metabolism , Prion Diseases/metabolism , Organoids/metabolism
9.
Vet Res ; 53(1): 111, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36527166

ABSTRACT

Chronic wasting disease (CWD) is a prion disease of cervids including deer, elk, reindeer, and moose. Human consumption of cervids is common, therefore assessing the risk potential of CWD transmission to humans is critical. In a previous study, we tested CWD transmission via intracerebral inoculation into transgenic mice (tg66 and tgRM) that over-expressed human prion protein. Mice screened by traditional prion detection assays were negative. However, in a group of 88 mice screened by the ultrasensitive RT-QuIC assay, we identified 4 tg66 mice that produced inconsistent positive RT-QuIC reactions. These data could be false positive reactions, residual input inoculum or indicative of subclinical infections suggestive of cross species transmission of CWD to humans. Additional experiments were required to understand the nature of the prion seeding activity in this model. In this manuscript, second passage experiments using brains from mice with weak prion seeding activity showed they were not infectious to additional recipient tg66 mice. Clearance experiments showed that input CWD prion seeding activity was eliminated by 180 days in tg66 mice and PrPKO mice, which are unable to replicate prion protein, indicating that the weak positive levels of seeding activity detected at later time points was not likely residual inoculum. The failure of CWD prions to cause disease in tg66 after two sequential passages suggested that a strong species barrier prevented CWD infection of mice expressing human prion protein.


Subject(s)
Deer , Prions , Reindeer , Rodent Diseases , Wasting Disease, Chronic , Humans , Animals , Mice , Prion Proteins/genetics , Prions/genetics , Mice, Transgenic
10.
PLoS Pathog ; 18(11): e1010947, 2022 11.
Article in English | MEDLINE | ID: mdl-36342968

ABSTRACT

Prion strains in a given type of mammalian host are distinguished by differences in clinical presentation, neuropathological lesions, survival time, and characteristics of the infecting prion protein (PrP) assemblies. Near-atomic structures of prions from two host species with different PrP sequences have been determined but comparisons of distinct prion strains of the same amino acid sequence are needed to identify purely conformational determinants of prion strain characteristics. Here we report a 3.2 Å resolution cryogenic electron microscopy-based structure of the 22L prion strain purified from the brains of mice engineered to express only PrP lacking glycophosphatidylinositol anchors [anchorless (a) 22L]. Comparison of this near-atomic structure to our recently determined structure of the aRML strain propagated in the same inbred mouse reveals that these two mouse prion strains have distinct conformational templates for growth via incorporation of PrP molecules of the same sequence. Both a22L and aRML are assembled as stacks of PrP molecules forming parallel in-register intermolecular ß-sheets and intervening loops, with single monomers spanning the ordered fibril core. Each monomer shares an N-terminal steric zipper, three major arches, and an overall V-shape, but the details of these and other conformational features differ markedly. Thus, variations in shared conformational motifs within a parallel in-register ß-stack fibril architecture provide a structural basis for prion strain differentiation within a single host genotype.


Subject(s)
Prions , Animals , Mice , Cryoelectron Microscopy , Genotype , Prion Proteins/genetics , Prions/metabolism , Protein Conformation
11.
Nat Commun ; 13(1): 4005, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831291

ABSTRACT

Little is known about the structural basis of prion strains. Here we provide a high (3.0 Å) resolution cryo-electron microscopy-based structure of infectious brain-derived fibrils of the mouse anchorless RML scrapie strain which, like the recently determined hamster 263K strain, has a parallel in-register ß-sheet-based core. Several structural motifs are shared between these ex vivo prion strains, including an amino-proximal steric zipper and three ß-arches. However, detailed comparisons reveal variations in these shared structural topologies and other features. Unlike 263K and wildtype RML prions, the anchorless RML prions lack glycophosphatidylinositol anchors and are severely deficient in N-linked glycans. Nonetheless, the similarity of our anchorless RML structure to one reported for wildtype RML prion fibrils in an accompanying paper indicates that these post-translational modifications do not substantially alter the amyloid core conformation. This work demonstrates both common and divergent structural features of prion strains at the near-atomic level.


Subject(s)
Prions , Scrapie , Amyloid , Animals , Brain/metabolism , Cryoelectron Microscopy , Mice , Prions/metabolism , Sheep
12.
Acta Neuropathol Commun ; 10(1): 90, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35733234

ABSTRACT

Currently, there is a need for diagnostic markers in Lewy body disorders (LBD). α-synuclein (αSyn) RT-QuIC has emerged as a promising assay to detect misfolded αSyn in clinically or neuropathologically established patients with various synucleinopathies. In this study, αSyn RT-QuIC was used to analyze lumbar CSF in a clinical cohort from the Swedish BioFINDER study and postmortem ventricular CSF in a neuropathological cohort from the Arizona Study of Aging and Neurodegenerative Disorders/Brain and Body Donation Program (AZSAND/BBDP). The BioFINDER cohort included 64 PD/PDD, 15 MSA, 15 PSP, 47 controls and two controls who later converted to PD/DLB. The neuropathological cohort included 101 cases with different brain disorders, including LBD and controls. In the BioFINDER cohort αSyn RT-QuIC identified LBD (i.e. PD, PDD and converters) vs. controls with a sensitivity of 95% and a specificity of 83%. The two controls that converted to LBD were αSyn RT-QuIC positive. Within the AZSAND/BBDP cohort, αSyn RT-QuIC identified neuropathologically verified "standard LBD" (i.e. PD, PD with AD and DLB; n = 25) vs. no LB pathology (n = 53) with high sensitivity (100%) and specificity (94%). Only 57% were αSyn RT-QuIC positive in the subgroup with "non-standard" LBD (i.e., AD with Lewy Bodies not meeting criteria for DLB or PD, and incidental LBD, n = 23). Furthermore, αSyn RT-QuIC reliably identified cases with LB pathology in the cortex (97% sensitivity) vs. cases with no LBs or LBs present only in the olfactory bulb (93% specificity). However, the sensitivity was low, only 50%, for cases with LB pathology restricted to the brainstem or amygdala, not affecting the allocortex or neocortex. In conclusion, αSyn RT-QuIC of CSF samples is highly sensitive and specific for identifying cases with clinicopathologically-defined Lewy body disorders and shows a lower sensitivity for non-standard LBD or asymptomatic LBD or in cases with modest LB pathology not affecting the cortex.


Subject(s)
Lewy Body Disease , Synucleinopathies , Brain/pathology , Brain Chemistry , Humans , Lewy Bodies/metabolism , Lewy Body Disease/diagnosis , Lewy Body Disease/pathology , alpha-Synuclein/metabolism
13.
mSphere ; 6(6): e0081221, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34878289

ABSTRACT

Chronic wasting disease (CWD) is a transmissible prion disease first observed in the 1960s in North America. This invariably fatal disease affects multiple cervid species in the wild and in captivity. In addition to the several known transmission pathways involving cervid host species, prions have been detected in the feces of crows and coyotes after consumption of experimentally spiked tissues. This raises questions about the role of cervid consumers in the perpetuation of CWD. Mountain lions have been shown to preferentially select CWD-infected prey and are also apparently resistant to infection. In this study, two captive mountain lions were fed ground mule deer muscle tissue spiked with brain-derived CWD prions, and lion feces were collected for 1 week afterward. The input brain and resulting fecal materials were analyzed using the highly sensitive real-time quaking-induced conversion (RT-QuIC) assay to quantify prion seeding activity. We recovered only 2.8 to 3.9% of input CWD prions after passage through the mountain lions' gastrointestinal tracts. Interestingly, CWD prions were shed only in the first defecation following consumption. Our data support the possibility that mountain lions feeding upon infected carcasses could excrete CWD prions in their feces over a short period of time but also suggest that most of the ingested prions are eliminated or sequestered by this large predator. IMPORTANCE CWD prions appear to spread naturally among susceptible cervid species in captivity and in the wild. A better understanding of all the ways these prions move, persist, and subsequently infect target species through the environment is critical to developing comprehensive disease control strategies. In our study, we show limited, transient pass-through of CWD prions in an apex predator, the mountain lion, using the highly sensitive RT-QuIC assay on feces collected after lions were fed prion-spiked muscle tissue. Prions were detected in feces only in the first defecation after exposure. Moreover, the amount of CWD prions recovered in feces was reduced by >96% after passing through the lion digestive system. This indicates that mountain lions may have some potential to distribute CWD prions within their home ranges but that they also effectively eliminate most of the CWD prions they consume.


Subject(s)
Biological Assay , Prions/metabolism , Puma/metabolism , Wasting Disease, Chronic/metabolism , Animals , Brain/metabolism , Feces/chemistry
14.
Acta Neuropathol Commun ; 9(1): 179, 2021 11 06.
Article in English | MEDLINE | ID: mdl-34742348

ABSTRACT

Alpha-synuclein seed amplification assays (αSyn-SAAs) are promising diagnostic tools for Parkinson's disease (PD) and related synucleinopathies. They enable detection of seeding-competent alpha-synuclein aggregates in living patients and have shown high diagnostic accuracy in several PD and other synucleinopathy patient cohorts. However, there has been confusion about αSyn-SAAs for their methodology, nomenclature, and relative accuracies when performed by various laboratories. We compared αSyn-SAA results obtained from three independent laboratories to evaluate reproducibility across methodological variations. We utilized the Parkinson's Progression Markers Initiative (PPMI) cohort, with DATSCAN data available for comparison, since clinical diagnosis of early de novo PD is critical for neuroprotective trials, which often use dopamine transporter imaging to enrich their cohorts. Blinded cerebrospinal fluid (CSF) samples for a randomly selected subset of PPMI subjects (30 PD, 30 HC, and 20 SWEDD), from both baseline and year 3 collections for the PD and HC groups (140 total CSF samples) were analyzed in parallel by each lab according to their own established and optimized αSyn-SAA protocols. The αSyn-SAA results were remarkably similar across laboratories, displaying high diagnostic performance (sensitivity ranging from 86 to 96% and specificity from 93 to 100%). The assays were also concordant for samples with results that differed from clinical diagnosis, including 2 PD patients determined to be clinically inconsistent with PD at later time points. All three assays also detected 2 SWEDD subjects as αSyn-SAA positive who later developed PD with abnormal DAT-SPECT. These multi-laboratory results confirm the reproducibility and value of αSyn-SAA as diagnostic tools, illustrate reproducibility of the assay in expert hands, and suggest that αSyn-SAA has potential to provide earlier diagnosis with comparable or superior accuracy to existing methods.


Subject(s)
Parkinson Disease/diagnosis , alpha-Synuclein/genetics , Aged , Biomarkers , Disease Progression , Female , Gene Amplification , Humans , Male , Middle Aged , Parkinson Disease/genetics , Prognosis , Prospective Studies , Reproducibility of Results , Sensitivity and Specificity , Terminology as Topic , Tomography, Emission-Computed, Single-Photon , alpha-Synuclein/cerebrospinal fluid
16.
Mol Cell ; 81(21): 4540-4551.e6, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34433091

ABSTRACT

Within the extensive range of self-propagating pathologic protein aggregates of mammals, prions are the most clearly infectious (e.g., ∼109 lethal doses per milligram). The structures of such lethal assemblies of PrP molecules have been poorly understood. Here we report a near-atomic core structure of a brain-derived, fully infectious prion (263K strain). Cryo-electron microscopy showed amyloid fibrils assembled with parallel in-register intermolecular ß sheets. Each monomer provides one rung of the ordered fibril core, with N-linked glycans and glycolipid anchors projecting outward. Thus, single monomers form the templating surface for incoming monomers at fibril ends, where prion growth occurs. Comparison to another prion strain (aRML) revealed major differences in fibril morphology but, like 263K, an asymmetric fibril cross-section without paired protofilaments. These findings provide structural insights into prion propagation, strains, species barriers, and membrane pathogenesis. This structure also helps frame considerations of factors influencing the relative transmissibility of other pathologic amyloids.


Subject(s)
Brain/metabolism , Cryoelectron Microscopy/methods , Polysaccharides/chemistry , Prions/chemistry , Prions/ultrastructure , Amyloid/chemistry , Animals , Glycolipids/chemistry , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Mice , Phenotype , Prion Proteins/chemistry , Protein Binding , Protein Structure, Secondary , Thermodynamics
17.
Sci Rep ; 11(1): 7702, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833330

ABSTRACT

Efforts to contain the spread of chronic wasting disease (CWD), a fatal, contagious prion disease of cervids, would be aided by the availability of additional diagnostic tools. RT-QuIC assays allow ultrasensitive detection of prion seeds in a wide variety of cervid tissues, fluids and excreta. The best documented antemortem diagnostic test involving RT-QuIC analysis targets lymphoid tissue in rectal biopsies. Here we have tested a more easily accessed specimen, ear pinna punches, using an improved RT-QuIC assay involving iron oxide magnetic extraction to detect CWD infections in asymptomatic mule and white-tailed deer. Comparison of multiple parts of the ear pinna indicated that a central punch spanning the auricular nerve provided the most consistent detection of CWD infection. When compared to results obtained from gold-standard retropharyngeal lymph node specimens, our RT-QuIC analyses of ear samples provided apparent diagnostic sensitivity (81%) and specificity (91%) that rivaled, or improved upon, those observed in previous analyses of rectal biopsies using RT-QuIC. These results provide evidence that RT-QuIC analysis of ear pinna punches may be a useful approach to detecting CWD infections in cervids.


Subject(s)
Ear, External/pathology , Wasting Disease, Chronic/diagnosis , Animals , Deer , Enzyme-Linked Immunosorbent Assay , Prions/isolation & purification , Species Specificity , Wasting Disease, Chronic/pathology
18.
Sci Rep ; 11(1): 5165, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33727594

ABSTRACT

Creutzfeldt-Jakob Disease (CJD) is a fatal, currently incurable, neurodegenerative disease. The search for candidate treatments would be greatly facilitated by the availability of human cell-based models of prion disease. Recently, an induced pluripotent stem cell derived human cerebral organoid model was shown to take up and propagate human CJD prions. This model offers new opportunities to screen drug candidates for the treatment of human prion diseases in an entirely human genetic background. Here we provide the first evidence that human cerebral organoids can be a viable model for CJD drug screening by using an established anti-prion compound, pentosan polysulfate (PPS). PPS delayed prion propagation in a prophylactic-like treatment paradigm and also alleviated propagation when applied following establishment of infection in a therapeutic-like treatment paradigm. This study demonstrates the utility of cerebral organoids as the first human 3D cell culture system for screening therapeutic drug candidates for human prion diseases.


Subject(s)
Cerebral Ventricles/drug effects , Creutzfeldt-Jakob Syndrome/drug therapy , Drug Evaluation, Preclinical/methods , Organoids/drug effects , Cell Culture Techniques/methods , Cell Line , Cerebral Ventricles/pathology , Creutzfeldt-Jakob Syndrome/pathology , Drug Discovery/methods , Humans , Organoids/pathology , Pentosan Sulfuric Polyester/pharmacology
19.
Ann Clin Transl Neurol ; 8(2): 374-384, 2021 02.
Article in English | MEDLINE | ID: mdl-33373501

ABSTRACT

BACKGROUND: Assays that specifically measure α-synuclein seeding activity in biological fluids could revolutionize the diagnosis of Parkinson's disease. Recent improvements in α-synuclein real-time quaking-induced conversion assays of cerebrospinal fluid have dramatically reduced reaction times from 5-13 days down to 1-2 days. OBJECTIVE: To test our improved assay against a panel of cerebrospinal fluid specimens from patients with Parkinson's disease and healthy controls from the MJ Fox Foundation/NINDS BioFIND collection. METHODS: Specimens collected from healthy controls and patients with clinically typical moderate-to-advanced Parkinson's disease were tested without prior knowledge of disease status. Correlative analyses between assay parameters and clinical measures were performed by an independent investigator. RESULTS: BioFIND samples gave positive signals in 105/108 (97%) Parkinson's disease cases versus 11/85 (13%) healthy controls. Receiver operating characteristic analyses of diagnosis of cases versus healthy controls gave areas under the curve of 95%. Beyond binary positive/negative determinations, only weak correlations were observed between various assay response parameters and Parkinson's disease clinical measures or other cerebrospinal fluid analytes. Of note, REM sleep behavioral disorder questionnaire scores correlated with the reaction times needed to reach 50% maximum fluorescence. Maximum fluorescence was inversely correlated with Unified Parkinson's Disease Rating Scale motor scores, which was driven by the patients without REM sleep behavioral disorder. CONCLUSIONS: Our improved α-synuclein seed amplification assay dramatically reduces the time needed to diagnose Parkinson's disease while maintaining the high-performance standards associated with previous α-synuclein seed assays, supporting the clinical utility of this assay for Parkinson's disease diagnosis.


Subject(s)
Biological Assay/methods , Biomarkers/cerebrospinal fluid , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/diagnosis , alpha-Synuclein/cerebrospinal fluid , Aged , Correlation of Data , Female , Humans , Male , Middle Aged , Parkinson Disease/physiopathology
20.
Ann Clin Transl Neurol ; 7(11): 2262-2271, 2020 11.
Article in English | MEDLINE | ID: mdl-33185334

ABSTRACT

OBJECTIVE: Real-time quaking-induced conversion (RT-QuIC) assays detect prion-seeding activity in a variety of human biospecimens, including cerebrospinal fluid and olfactory mucosa swabs. The assay has shown high diagnostic accuracy in patients with prion disorders. Recently, advances in these tests have led to markedly improved diagnostic sensitivity and reduced assay times. Accordingly, an algorithm has been proposed that entails the use of RT-QuIC analysis of both sample types to diagnose sporadic Creutzfeldt-Jakob disease with nearly 100% accuracy. Here we present a multi-center evaluation (ring trial) of the reproducibility of these improved "second generation" RT-QuIC assays as applied to these diagnostic specimens. METHODS: Cerebrospinal fluid samples were analyzed from subjects with sporadic Creutzfeldt-Jakob (n = 55) or other neurological diseases (n = 45) at multiple clinical centers. Olfactory mucosa brushings collected by multiple otolaryngologists were obtained from nine sporadic Creutzfeldt-Jakob disease cases and 19 controls. These sample sets were initially tested blindly by RT-QuIC by a coordinating laboratory, recoded, and then sent to five additional testing laboratories for blinded ring trial testing. RESULTS: Unblinding of the results by a third party indicated 98-100% concordance between the results obtained by the testing of these cerebrospinal fluid and nasal brushings at the six laboratories. INTERPRETATION: This second-generation RT-QuIC assay is highly transferrable, reproducible, and therefore robust for the diagnosis of sporadic Creutzfeldt-Jakob disease in clinical practice.


Subject(s)
Biological Assay/standards , Creutzfeldt-Jakob Syndrome/cerebrospinal fluid , Creutzfeldt-Jakob Syndrome/diagnosis , Diagnostic Techniques, Neurological/standards , Olfactory Mucosa/metabolism , Prions/cerebrospinal fluid , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...