Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 46(24): 7939-7946, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28604868

ABSTRACT

Persulfides of cysteine (CysSSH), glutathione (GSSH) or N-methoxycarbonyl-penicillamine (NAcPenSSH) react with the ferric form of myoglobin (metMb(iii)) to yield the oxy-ferrous (oxyMb(ii)) or deoxy-ferrous (deoxyMb(ii)) forms of myoglobin under aerobic or anaerobic conditions, respectively. Under aerobic conditions, CysSSH and NAcPenSSH react with the hypervalent form of myoglobin (ferrylMb(iv)) to yield oxyMb(ii) as the final product with the formation of metMb(iii) as an intermediate. CysSSH and NAcPenSSH coordinate the ferric form of N-acetylated microperoxidase (NAcMP11(iii)) to yield the disulfanido complex NAcMP11(iii)(NAcPenSS), as shown by UV-vis and EPR spectroscopy. Experiments carried out with various NAcMP11 derivatives demonstrate a redox equilibrium between the ferric/ferrous forms of the heme and the polysulfides/persulfides couple. Our results suggest that persulfides possess uncommon redox properties, analogous to that of dihydrolipoic acid.


Subject(s)
Coenzymes/metabolism , Heme/metabolism , Myoglobin/metabolism , Peroxidases/metabolism , Sulfides/metabolism , Acetylation , Iron/metabolism , Oxidation-Reduction , Solubility , Water/chemistry
2.
ChemMedChem ; 7(6): 1020-30, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22489069

ABSTRACT

New series of acids and hydroxamic acids linked to five-membered heterocycles including furan, oxazole, 1,2,4- or 1,3,4-oxadiazole, and imidazole were synthesized and tested as inhibitors against the Fe(II) , Co(II) , and Mn(II) forms of E. coli methionine aminopeptidase (MetAP) and as antibacterial agents against wild-type and acrAB E. coli strains. 2-Aryloxazol-4-ylcarboxylic acids appeared as potent and selective inhibitors of the Co(II) MetAP form, with IC(50) values in the micromolar range, whereas 5-aryloxazol-2-ylcarboxylic acid regioisomers and 5-aryl-1,2,4-oxadiazol-3-ylcarboxylic acids were shown to be inefficient against all forms of EcMetAP. Regardless of the heterocycle, all the hydroxamic acids are highly potent inhibitors and are selective for the Mn(II) and Fe(II) forms, with IC(50) values between 1 and 2 µM. One indole hydroxamic acid that we previously reported as a potent inhibitor of E. coli peptide deformylase also demonstrated efficiency against EcMetAP. To gain insight into the positioning of the oxazole heterocycle with reversed substitutions at positions 2 and 5, X-ray crystal structures of EcMetAP-Mn complexed with two such oxazole hydroxamic acids were solved. Irrespective of the [metal]/[apo-MetAP] ratio, the active site consistently contains a dinuclear manganese center, with the hydroxamate as bridging ligand. Asp 97, which adopts a bidentate binding mode to the Mn2 site in the holoenzyme, is twisted in both structures toward the hydroxamate bridging ligand to favor the formation of a strong hydrogen bond. Most of the compounds show weak antibacterial activity against a wild-type E. coli strain. However, increased antibacterial activity was observed mainly for compounds with a 2-substituted phenyl group in the presence of the nonapeptide polymyxin B and phenylalanine-arginine-ß-naphthylamide as permeabilizer and efflux pump blocker, respectively, which boost the intracellular uptake of the inhibitors.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/chemistry , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli/enzymology , Hydroxamic Acids/chemistry , Aminopeptidases/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Escherichia coli/drug effects , Escherichia coli Proteins/metabolism , Ferrous Compounds/chemistry , Heterocyclic Compounds/chemistry , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacology , Manganese/chemistry , Methionyl Aminopeptidases , Protein Structure, Tertiary , Structure-Activity Relationship
3.
J Antimicrob Chemother ; 67(6): 1392-400, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22378679

ABSTRACT

OBJECTIVES: Bacterial drug resistance is a worrying public health problem and there is an urgent need for research and development to provide new antibacterial molecules. Peptide deformylase (PDF) is now a well-described intracellular target selected for the design of a new antibiotic group, PDF inhibitors (PDFIs). The initial bacterial susceptibility to an inhibitor of a cytoplasmic target is directly associated with the diffusion of the compound through the membrane barrier of Gram-negative bacteria and with its cytosolic accumulation at the required concentration. METHODS: We have recently demonstrated that the activity of different PDFIs is strongly dependent on the accumulation of the active molecules by using permeabilizing agents, efflux inhibitors or efflux-mutated strains. In this work we assessed various combination protocols using different putative inhibitors (PDFIs, methionine aminopeptidase inhibitors etc.) to improve antibacterial activity against various resistant Gram-negative bacteria. RESULTS: The maximum effect was observed when combining actinonin with a dual inhibitor of methionine aminopeptidase and PDF, this molecule being also able to interact with the target while actinonin is bound to the PDF active site. CONCLUSIONS: Such a combination of inhibitors acting on two tightly associated metabolic steps results in a cooperative effect on bacterial cells and opens an original way to combat multidrug-resistant bacteria.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Synergism , Enzyme Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...