Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Molecules ; 25(12)2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32560470

ABSTRACT

A simple, sensitive, and rapid UHPLC-MS/MS method was developed for the simultaneous determination of veratraldehyde and its metabolite veratric acid in rat plasma. Cinnamaldehyde was used as an internal standard (IS) and the one-step protein precipitation method with 0.2% formic acid in acetonitrile (mobile phase B) was used for the sample extraction. Reversed C18 column (YMC-Triart C18 column, 50 mm × 2.0 mm, 1.9 µm) was used for chromatographic separation and was maintained at 30 °C. The total run time was 4.5 min and the electrospray ionization in positive mode was used with the transition m/z 167.07 → 139.00 for veratraldehyde, m/z 183.07 → 139.00 for veratric acid, and m/z 133.00 → 55.00 for IS. The developed method exhibited good linearity (r2 ≥ 0.9977), and the lower limits of quantification ranged from 3 to 10 ng/mL for the two analytes. Intra-day precision and accuracy parameters met the criteria (within ±15%) during the validation. The bioanalytical method was applied for the determination of veratraldehyde and veratric acid in rat plasma after oral and percutaneous administration of 300 and 600 mg/kg veratraldehyde. Using the analytical methods established in this study, we can confirm the absorption and metabolism of veratraldehyde in rats for various routes.


Subject(s)
Benzaldehydes , Plasma/metabolism , Vanillic Acid/analogs & derivatives , Administration, Cutaneous , Administration, Oral , Animals , Benzaldehydes/pharmacokinetics , Benzaldehydes/pharmacology , Male , Rats , Tandem Mass Spectrometry , Vanillic Acid/pharmacokinetics , Vanillic Acid/pharmacology
2.
Pharmaceutics ; 12(6)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32527003

ABSTRACT

A surge of interest in microneedle (MN) vaccines as a novel vaccination system has emerged. Before the clinical application of MN vaccine, an assessment of potential biological risks to skin and quality control of MN must be performed. Therefore, the present study aims to evaluate the physicochemical properties of MN and to evaluate the histological changes and inflammatory cell infiltrations after the application of MN with hepatitis B surface antigen (HBsAg). During in vitro and in vivo release testing, HBsAg MN released over 70% of HBsAg at 30 min. During the pyrogen test of HBsAg MN in rabbit, no rabbit showed an individual rise in temperature of 0.5 °C or more. MN with HBsAg produced the moderate immunization in mice. MN application did not alter the thickness of dermal and epidermal layers in mice. In addition, the topical applications of MN and MN for hepatitis B vaccine did not acutely induce the inflammation, allergic reaction, dermal toxicity and skin irritation. Thus, the MN system for the delivery of HBsAg could be the promising technology in the hepatitis B vaccination.

3.
Pharmaceutics ; 12(2)2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32079194

ABSTRACT

Recently, Achyranthis radix extract has been studied as a therapeutic agent for dry eye disease that occurs from fine dust. The aim of this study was the development of Achyranthis radix extract-loaded eye drop formulations using lubricants, generally used for artificial tear eye drops. Ecdysterone was used as a marker compound for Achyranthis radix extract and 1% Achyranthis radix extract solution contained 14.37 ± 0.04 µg/mL of ecdysterone. Before formulation studies, a new method was performed to evaluate pigmentation, which might be caused by eye drops of herbal extract. A comparative study of the water retention ability of each formulation and ability to prevent the death of conjunctival epithelial cells in dry conditions was conducted. Moreover, treatment of Achyranthis radix extract (USL) eye drop formulation exhibited a significant inhibitory effect on inflammation in a concentration-dependent manner. The long-term and accelerated stability tests showed that lubricants could contribute to the stability of herbal extracts in solution. In conclusion, hyaluronic acid showed a good effect on the development of eye drop formulation using Achyranthis radix extracts for treating dry eye disease.

4.
Pharmaceutics ; 12(1)2020 01 07.
Article in English | MEDLINE | ID: mdl-31936070

ABSTRACT

Diabetes mellitus (DM) has become a major health problem in most countries of the world. DM causes many complications, including hyperglycemia, diabetic ketoacidosis, and death. In Asia, mulberry has been used widely in the treatment of DM. Combination of drugs with herbal medicine may reduce the unwanted side effects caused by drugs. In this study, the influence of extended mulberry leaves extract (MLE) intake on metformin (Met) was evaluated in terms of pharmacokinetics and pharmacodynamics in DM-induced rats. Three week-treatment of MLE alone produced the anti-hyperglycemic effect (around 24%) if compared to the control. Interestingly, Met administration after MLE treatment for 3 weeks enhanced about 49% of the anti-hyperglycemic effect of Met. In addition, the extended intake of MLE potentiated the anti-hyperglycemic effect of Met on various concentrations. This potentiated anti-hyperglycemic effect of Met appears to be due to the pharmacokinetic change of Met. In this study, 3 week-treatment of MLE reduced the elimination of Met in DM-induced rats. In addition, MLE reduced the human organic cation transporter 2 (hOCT2) activity in a concentration-dependent manner. Thus, these findings suggest that MLE lowered the elimination of Met via inhibiting the hOCT2.

5.
Acta Biomater ; 101: 507-518, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31629894

ABSTRACT

Treatment of skin infection by dermatophytes is still limited, and the application of conventional topical formulations (ointments, creams, etc.) cause patient discomfort due to repeated administration and low efficacy. This study describes the film-forming system (FFS) hybridized with econazole (ECO)-loaded nanostructured lipid carriers (NLC) for enhanced antifungal activity against dermatophytes. We assumed that the application of NLC could effectively increase the skin permeability of ECO, thereby suppressing the growth of dermatophytes in stratum corneum as well as in epidermis. Meanwhile, ECO-NLC hybrid FFS (ECO-NLC@FFS) could increase the adhesion of ECO-NLC to the skin and prolong the antifungal activity of ECO. First, we optimized ECO-NLC, which shows nanosized particle (199 nm), high encapsulation efficiency (92.5%), and biocompatibility. ECO-NLC@FFS formed a transparent, homogeneous, and hard-to-remove film after topical application. In vitro skin permeation and deposition studies demonstrated that ECO-NLC@FFS showed 1.5-fold higher skin permeation and 3-fold higher ECO deposition in the epidermis layer than a commercial product, which resulted from the nanosized particle and its occlusion effect. And, ex vivo and in vivo antifungal activity studies confirmed that ECO-NLC@FFS improved the skin adhesion of ECO-NLC, thereby allowing ECO to be continuously exposed to the infection sited and reducing the number of applications with a single dose. These results showed that this hybrid system could be a potential for effectively improving the efficacy of antifungal agents and the patient compliance in the treatment of dermatophytes. STATEMENT OF SIGNIFICANCE: Treatment of skin infection by dermatophytes is difficult due to the inconvenience and low efficacy of conventional topical formulations. Here, we demonstrated the potential of a film-forming system (FFS) hybridized with nanostructured lipid carriers (NLC). First, we confirmed that the enhanced skin permeability of drug was improved by NLC. In addition, the hybridization of NLC with FFS improved the skin adhesion of NLC, allowing the drug to exhibit a sustained release profile and prolong antifungal activity. Given the maximized antifungal activity, this hybrid system can be used as a potential pharmaceutical technique to improve patient convenience and achieve complete treatment of skin infection.


Subject(s)
Antifungal Agents/pharmacology , Arthrodermataceae/drug effects , Biofilms/drug effects , Drug Carriers/chemistry , Econazole/pharmacology , Lipids/chemistry , Nanostructures/chemistry , Animals , Cell Death/drug effects , Cell Survival/drug effects , HaCaT Cells , Humans , Male , Mice, Inbred ICR , Microbial Sensitivity Tests , Nanostructures/ultrastructure , Permeability , Rats, Sprague-Dawley , Skin/drug effects , Tissue Distribution/drug effects
6.
Mater Sci Eng C Mater Biol Appl ; 104: 109980, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31500011

ABSTRACT

The aim of this study was to solidify a ticagrelor loaded self-microemulsifying drug delivery system (TCG-SM) with enhanced dissolution and bioavailability of ticagrelor (TCG) for developing TCG-SM granules and tablets. TCG was dissolved in the self-microemulsifying drug delivery system (SMEDDS) and TCG-SM was solidified by adsorption to the optimized adsorbent through statistical design. In order to select an appropriate adsorbent, the physical properties (bulk density, tapped density, angle of repose, and liquid adsorption capacity) of silica-based adsorbents (Neusilin US2, Florite R, Aerosil 200, and Florite PS-10) and non silica-based adsorbents (Avicel PH102, Pharmatose 100M, Pearlitol 200, LH-11, and Emcompress) were investigated. Neusilin US2 and Florite R were selected as suitable adsorbents and their mixing ratios were optimized using statistical experimental design. The predicted values of physical properties by statistical design showed the error percentage of <10% compared to actual values. As a result of the statistical approach, TCG-SM (490 mg) was successfully solidified with Nesulin US2 (167.8 mg) and Florite R (82.2 mg), which showed good powder properties and improved dissolution of TCG. The solidified TCG-SM (Sol-TCG-SM), disintegrant (croscarmellose sodium), diluent (microcrystalline cellulose), binder (polyvinylpyrrolidone), and lubricant (magnesium stearate) were mixed to prepare granules. And, the granules with total weight of 900 mg were tableted using 16 mm oval-shape punch. The prepared Sol-TCG-SM tablet showed good tablet properties and maintained self-microemulsifying ability, such as microemulsion formation and enhanced dissolution of TCG. In vivo pharmacokinetic study, the relative bioavailability of Sol-TCG-SM exhibited 108.1% and 632.7% compared to TCG-SM and raw TCG powder, respectively. In conclusion, we successfully solidified SMEDDS with improved oral bioavailability of insoluble drugs such as TCG through a statistical design. This suggests a new approach that can be utilized in the production of solidified SMEDDS.


Subject(s)
Emulsions/chemistry , Solubility/drug effects , Ticagrelor/chemistry , Administration, Oral , Aluminum Compounds/chemistry , Animals , Biological Availability , Cellulose/chemistry , Chemistry, Pharmaceutical/methods , Drug Delivery Systems/methods , Excipients/chemistry , Magnesium Compounds/chemistry , Male , Powders/chemistry , Rats , Rats, Sprague-Dawley , Silicates/chemistry , Silicon Dioxide/chemistry , Tablets/chemistry
7.
Pharmaceutics ; 11(7)2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31330787

ABSTRACT

Tadalafil is a cytochrome P450 (CYP) 3A4 substrate. Because there are few data on drug-drug interactions, it is advisable to take sufficient consideration when co-administering tadalafil with CYP3A4 inducers or inhibitors. This study was conducted to assess the effect of ticagrelor, a CYP3A4 inhibitor, on the pharmacokinetic properties of tadalafil after oral administration to rats. A total of 20 Sprague-Dawley male rats were randomly divided into the non-pretreated group and ticagrelor-pretreated group, and tadalafil was orally administered to each group after pretreatment with or without ticagrelor. Blood samples were collected at predetermined time points after oral administration of tadalafil. As a result, systemic exposure of tadalafil in the ticagrelor-pretreated group was significantly increased compared to the non-pretreated group (1.61-fold), and the clearance of tadalafil in the ticagrelor-pretreated group was significantly reduced than the non-pretreated group (37%). The prediction of the drug profile through the one-compartment model could explain the differences of pharmacokinetic properties of tadalafil in the non-pretreated and ticagrelor-pretreated groups. This study suggests that ticagrelor reduces a CYP3A-mediated tadalafil metabolism and that tadalafil and a combination regimen with tadalafil and ticagrelor requires dose control and specific pharmacotherapy.

8.
Cancers (Basel) ; 11(6)2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31212681

ABSTRACT

Strategies for the development of anticancer drug delivery systems have undergone a dramatic transformation in the last few decades. Lipid-based drug delivery systems, such as a nanostructured lipid carrier (NLC), are one of the systems emerging to improve the outcomes of tumor treatments. However, NLC can act as an intruder and cause an immune response. To overcome this limitation, biomimicry technology was introduced to decorate the surface of the nanoparticles with various cell membrane proteins. Here, we designed paclitaxel (PT)-loaded nanostructured lipid carrier (PT-NLC) with platelet (PLT) membrane protein because PLT is involved with angiogenesis and interaction of circulating tumor cells. After PLT was isolated from blood using the gravity-gradient method and it was used for coating PT-NLC. Spherical PT-NLC and platelet membrane coated PT-NLC (P-PT-NLC) were successfully fabricated with high encapsulation efficiency (EE) (99.98%) and small particle size (less than 200 nm). The successful coating of PT-NLC with a PLT membrane was confirmed by the identification of CD41 based on transmission electron microscopy (TEM), western blot assay and enzyme-linked immunosorbent assay (ELISA) data. Moreover, the stronger affinity of P-PT-NLC than that of PT-NLC toward tumor cells was observed. In vitro cell study, the PLT coated nanoparticles successfully displayed the anti-tumor effect to SK-OV-3 cells. In summary, the biomimicry carrier system P-PT-NLC has an affinity and targeting ability for tumor cells.

9.
Pharmaceutics ; 11(5)2019 May 08.
Article in English | MEDLINE | ID: mdl-31071977

ABSTRACT

Ticagrelor (TGL), a P2Y12 receptor antagonist, is classified as biopharmaceutics classification system (BCS) class IV drug due to its poor solubility and permeability, resulting in low oral bioavailability. Nanostructured lipid carriers (NLC) are an efficient delivery system for the improvement of bioavailability of BCS class IV drugs. Hence, we prepared TGL-loaded NLC (TGL-NLC) to enhance the oral bioavailability and antiplatelet activity of TGL with a systemic design approach. The optimized TGL-NLC with Box-Behnken design showed a small particle size of 87.6 nm and high encapsulation efficiency of 92.1%. Scanning electron microscope (SEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) were performed to investigate the characteristics of TGL-NLC. Furthermore, TGL-NLC exhibited biocompatible cytotoxicity against Caco-2 cells. Cellular uptake of TGL-NLC was 1.56-fold higher than that of raw TGL on Caco-2 cells. In pharmacokinetic study, the oral bioavailability of TGL-NLC was 254.99% higher than that of raw TGL. In addition, pharmacodynamic study demonstrated that the antiplatelet activity of TGL-NLC was superior to that of raw TGL, based on enhanced bioavailability of TGL-NLC. These results suggest that TGL-NLC can be applied for efficient oral absorption and antiplatelet activity of TGL.

10.
Int J Nanomedicine ; 14: 1193-1212, 2019.
Article in English | MEDLINE | ID: mdl-30863054

ABSTRACT

BACKGROUND: Ticagrelor (TCG) is used to inhibit platelet aggregation in patients with acute coronary syndrome, but its poor solubility and low bioavailability limit its in vivo efficacy. The purpose of this study was to manufacture an optimized TCG-loaded self-microemulsifying drug delivery system (SMEDDS) to enhance the oral bioavailability and antiplatelet activity of TCG. MATERIALS AND METHODS: Solubility and emulsification tests were conducted to determine the most suitable oils, surfactants, and cosurfactants. Scheffé's mixture design was applied to optimize the percentage of each component applied in the SMEDDS formulation to achieve optimal physical characteristics, ie, high solubility of TCG in SMEDDS, small droplet size, low precipitation, and high transmittance. RESULTS: The optimized TCG-loaded SMEDDS (TCG-SM) formulation composed of 10.0% Capmul MCM (oil), 53.8% Cremophor EL (surfactant), and 36.2% Transcutol P (cosurfactant) significantly improving the dissolution of TCG in various media compared with TCG in Brilinta® (commercial product). TCG-SM exhibited higher cellular uptake and permeability in Caco-2 cells than raw TCG suspension. In pharmacokinetic studies in rats, TCG-SM exhibited higher oral bioavailability with 5.7 and 6.4 times higher area under the concentration-time curve and maximum plasma concentration, respectively, than a raw TCG suspension. Antiplatelet activity studies exhibited that the TCG-SM formulation showed significantly improved inhibition of platelet aggregation compared with raw TCG at the same dose of TCG. And, a 10 mg/kg dose of raw TCG suspension and a 5 mg/kg dose of TCG-SM had a similar area under the inhibitory curve (907.0%±408.8% and 907.8%±200.5%⋅hours, respectively) for antiplatelet activity. CONCLUSION: These results suggest that the developed TCG-SM could be successfully used as an efficient method to achieve the enhanced antiplatelet activity and bioavailability of TCG.


Subject(s)
Drug Delivery Systems/methods , Emulsions/chemistry , Platelet Aggregation Inhibitors/pharmacology , Ticagrelor/pharmacology , Administration, Oral , Animals , Biological Availability , Caco-2 Cells , Cell Survival/drug effects , Humans , Male , Models, Theoretical , Rats, Sprague-Dawley , Ticagrelor/administration & dosage , Ticagrelor/blood , Ticagrelor/pharmacokinetics
11.
Int J Pharm ; 555: 11-18, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30448313

ABSTRACT

The aim of this study is to improve the bioavailability of ticagrelor, BCS class 4 drug, using solid dispersion technique, and to evaluate the potential of ticagrelor loaded-solid dispersion, as a new formulation. The solid dispersion formulation was prepared via solvent evaporation method using ethanol. TPGS and Neusilin® US2 selected via screening studies were used for preparing formulation. The results of scanning electron microscopy, differential scanning calorimetry and powder X-ray diffraction showed that the crystallinity of the ticagrelor was completely transformed to an amorphous form and maintained in the solid dispersion formulation. The released amount of the optimized solid dispersion significantly increased by 2.2- and 34-fold in comparison with physical mixture (Ticagrelor:TPGS:Neusilin® US2 = 1:2:2, w/w/w) and commercial product (Brilinta®) in distilled water at 90 min, respectively. The absorptive permeability was improved (1.4-fold) and the efflux ratio was decreased (0.45-fold) by formulation containing TPGS acting as a P-gp inhibitor compared to pure drug. The solid dispersion formulation improved the peak plasma concentration (Cmax) and relative bioavailability compared to that of pure drug as 238.09 ±â€¯25.96% and 219.78 ±â€¯36.33%, respectively, after oral administration in rats. Thus, we successfully prepared the solid dispersion formulation for enhancing oral bioavailability of ticagrelor, and then this formulation would be recommended as a practical oral pharmaceutical product.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Purinergic P2Y Receptor Antagonists/administration & dosage , Ticagrelor/administration & dosage , Administration, Oral , Animals , Biological Availability , Calorimetry, Differential Scanning , Crystallization , Drug Liberation , Intestinal Absorption , Male , Microscopy, Electron, Scanning , Permeability , Purinergic P2Y Receptor Antagonists/chemistry , Purinergic P2Y Receptor Antagonists/pharmacokinetics , Rats , Rats, Sprague-Dawley , Solubility , Solvents/chemistry , Ticagrelor/chemistry , Ticagrelor/pharmacokinetics , X-Ray Diffraction
12.
Carbohydr Polym ; 126: 130-40, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25933531

ABSTRACT

A biomineralized hydrogel system containing hyaluronic acid (HA) and poloxamer composed of a poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) (PEO-PPO-PEO) block copolymer was developed as a biomimetic thermo-responsive injectable hydrogel system for bone regeneration. Using HA and poloxamer macromers with polymerizable residues, organic/inorganic HA/poloxamer hydrogels with various compositions were prepared and subjected to a biomineralization process to mimic the bone extracellular matrix. An increase in HA content within the hydrogels enhanced intermolecular chelation with calcium ions, leading to an increase in nucleation and growth of calcium phosphate in the hydrogels. After the biomineralization procedure, a crystalline formation was observed within and on the surface of the hydrogel. All of the HA/poloxamer hydrogel samples exhibited relatively high water content of greater than 90% at 25 °C, and the water content was influenced by the HA/poloxamer composition, biomineralization, and temperature. In particular, the HA/poloxamer hydrogel was injectable through a syringe without demonstrating appreciable macroscopic fracture at room temperature, whereas it was more opaque and adopted a more rigid structure as the temperature increased because of the increasing hydrophobicity of poloxamer. The enzymatic degradation behavior of the hydrogels depended on the concentration of hyaluronidase, HA/poloxamer composition, and biomineralization. The release kinetics of model drugs from HA/poloxamer hydrogels was primarily dependent on the drug loading content, water content, biomineralization of the hydrogels, and ionic properties of the drug. These results indicate that biomineralized HA/poloxamer hydrogel is a promising candidate material for a biomimetic hydrogel system that promotes bone tissue repair and regeneration via local delivery of drugs.


Subject(s)
Bone Substitutes/chemistry , Drug Carriers/chemistry , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Poloxamer/chemistry , Polyethylene Glycols/chemistry , Propylene Glycols/chemistry , Biomimetics , Bone Substitutes/administration & dosage , Bone Substitutes/metabolism , Drug Carriers/administration & dosage , Drug Carriers/metabolism , Drug Liberation , Humans , Hyaluronic Acid/administration & dosage , Hyaluronic Acid/metabolism , Hyaluronoglucosaminidase/metabolism , Hydrogels/administration & dosage , Hydrogels/metabolism , Injections , Models, Molecular , Poloxamer/administration & dosage , Poloxamer/metabolism , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/metabolism , Propylene Glycols/administration & dosage , Propylene Glycols/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...