Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Ann Occup Environ Med ; 36: e12, 2024.
Article in English | MEDLINE | ID: mdl-38872633

ABSTRACT

Background: Perfluoroalkyl substances (PFASs) are non-aromatic organic compounds, whose hydrogen atoms in the carbon chain substituted by fluorine atoms. PFASs exhibit developmental toxicity, carcinogenicity, hepatotoxicity, reproductive toxicity, immunotoxicity, and hormone toxicity. PFASs are used in the production of disposable food packages, aircraft and automobile devices, cooking utensils, outdoor gear, furniture and carpets, aqueous film forming foam (AFFF), cables and wires, electronics, and semiconductors. This study aimed to determine the association between crustacean consumption and serum PFASs. Methods: Adult participants (2,993) aged ≥ 19 years were extracted from the 4th cycle data of the Korean National Environmental Health Survey (KoNEHS). Based on the 50th percentile concentrations of serum PFASs, participants were divided into the low-concentration group (LC) and the high-concentration group (HC). General characteristics, dietary factors, coated product usage, and personal care product usage, an independent t-test and χ2 test were analyzed. The odds ratio (OR) of serum PFAS concentration against crustacean consumption was estimated via logistic regression analysis adjusting for general characteristics, dietary factors, coated product usage, and personal care product usage. Results: The OR for the HC of serum PFASs was higher in individuals with ≥once a week crustacean consumption than in those with < once a week crustacean consumption. Estimated ORs were perfluorohexanesulfonic acid 2.15 (95% confidence interval [CI]: 1.53-3.02), perfluorononanoic acid (PFNA) 1.23 (95% CI: 1.07-1.41), and perfluorodecanoic acid (PFDeA) 1.42 (95% CI: 1.17-1.74) in males, and perfluorooctanoic acid 1.48 (95% CI: 1.19-1.84), perfluorooctanesulfonic acid 1.39 (95% CI: 1.27-1.52), PFNA 1.70 (95% CI: 1.29-2.26) and PFDeA 1.43 (95% CI: 1.32-1.54) in females. Conclusions: This study revealed the association between the crustacean consumption and concentrations of serum PFASs in general Korean population.

2.
Small ; : e2400638, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804126

ABSTRACT

The lithium deposited via the complex electrochemical heterogeneous lithium deposition reaction (LDR) process on a lithium foil-based anode (LFA) forms a high-aspect-ratio shape whenever the reaction kinetics reach its limit, threatening battery safety. Thereby, a research strategy that boosts the LDR kinetics is needed to construct a high-power and safe lithium metal anode. In this study, the kinetic limitations of the LDR process on LFA are elucidated through operando and ex situ observations using in-depth electrochemical analyses. In addition, ultra-thin (≈0.5 µm) and high modulus (≥19 GPa) double-walled carbon nanotube (DWNT) membranes with different surface properties are designed to catalyze high-safety LDRs. The oxygen-functionalized DWNT membranes introduced on the LFA top surface simultaneously induce multitudinous lithium nuclei, leading to film-like lithium deposition even at a high current density of 20 mA cm-2. More importantly, the layer-by-layer assembly of the oxygen-functionalized and pristine DWNT membranes results in different surface energies between the top and bottom surfaces, enabling selective surface LDRs underneath the high-modulus bilayer membranes. The protective LDR on the bilayer-covered LFA guarantees an invulnerable cycling process in large-area pouch cells at high current densities for more than 1000 cycles, demonstrating the practicability of LFA in a conventional liquid electrolyte system.

3.
Int J Mol Sci ; 25(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38339006

ABSTRACT

Climate change adversely affects the water and temperature conditions required for plant growth, leading to a decrease in yield. In high temperatures, oxidative stress causes cellular damage in plant cells, which is a negative factor for crop production. Thioredoxin (Trx) is a small redox protein containing a conserved WC(G/P)PC motif that catalyzes the exchange of disulfide bonds. It is known to play an important role in maintaining cellular redox homeostasis. Trx proteins are widely distributed across various subcellular locations, and they play a crucial role in responding to cellular stresses. In this study, seven CaTrxh-type genes present in pepper were identified and the CaTrxh-type family was classified into three subgroups. CaTrxh genes responded to heat stress. Moreover, subcellular locations of the CaTrxh family exhibited dynamic patterns in normal conditions, and we observed relocalizations in heat stress conditions. Each CaTrxh family protein member formed homo-/heteromeric protein complexes in BiFC assay. Unexpectedly, subgroup III CaTrxh9 and CaTrxh10 can recruit subgroup I and II CaTrxh proteins into the plasma membrane. Thus, the function of the CaTrxh-type family is expected to play a protective role in the cell in response to high-temperature stress via protein complex formations. CaTrxh may have potential applications in the development of crops with enhanced tolerance to oxidative stress.


Subject(s)
Capsicum , Capsicum/metabolism , Temperature , Plant Proteins/metabolism , Heat-Shock Response/genetics , Gene Expression Regulation, Plant , Stress, Physiological/genetics
4.
PLoS Genet ; 19(8): e1010925, 2023 08.
Article in English | MEDLINE | ID: mdl-37639482

ABSTRACT

The mammalian cochlea is composed of sensory hair cells as well as multiple different types of non-sensory supporting cells. Pillar cells are one type of supporting cell that form the tunnel of Corti and include two morphologically and functionally distinct subtypes: inner pillar cells (IPCs) and outer pillar cells (OPCs). The processes of specification and differentiation of inner versus outer pillar cells are still unclear. Here, we show that ß-Catenin is required for establishing IPC identity in the mammalian cochlea. To differentiate the transcriptional and adhesion roles of ß-Catenin in establishing IPC identity, we examined two different models of ß-Catenin deletion; one that deletes both transcriptional and structural functions and one which retains cell adhesion function but lacks transcriptional function. Here, we show that cochleae lacking ß-Catenin transcriptional function lost IPCs and displayed extranumerary OPCs, indicating its requirement for establishing IPC identity. Overexpression of ß-Catenin induced proliferation within IPCs but not ectopic IPCs. Single-cell transcriptomes of supporting cells lacking ß-Catenin transcriptional function show a loss of the IPC and gain of OPC signatures. Finally, targeted deletion of ß-Catenin in IPCs also led to the loss of IPC identity, indicating a cell autonomous role of ß-Catenin in establishing IPC identity. As IPCs have the capacity to regenerate sensory hair cells in the postnatal cochlea, our results will aid in future IPC-based hair cell regeneration strategies.


Subject(s)
Cochlea , beta Catenin , Animals , beta Catenin/genetics , Hair Cells, Auditory , Cell Adhesion/genetics , Cell Differentiation/genetics , Mammals
5.
Exp Mol Med ; 55(8): 1806-1819, 2023 08.
Article in English | MEDLINE | ID: mdl-37537215

ABSTRACT

Social interaction among conspecifics is essential for maintaining adaptive, cooperative, and social behaviors, along with survival among mammals. The 5-hydroxytryptamine (5-HT) neuronal system is an important neurotransmitter system for regulating social behaviors; however, the circadian role of 5-HT in social interaction behaviors is unclear. To investigate whether the circadian nuclear receptor REV-ERBα, a transcriptional repressor of the rate-limiting enzyme tryptophan hydroxylase 2 (Tph2) gene in 5-HT biosynthesis, may affect social interaction behaviors, we generated a conditional knockout (cKO) mouse by targeting Rev-Erbα in dorsal raphe (DR) 5-HT neurons (5-HTDR-specific REV-ERBα cKO) using the CRISPR/Cas9 gene editing system and assayed social behaviors, including social preference and social recognition, with a three-chamber social interaction test at two circadian time (CT) points, i.e., at dawn (CT00) and dusk (CT12). The genetic ablation of Rev-Erbα in DR 5-HTergic neurons caused impaired social interaction behaviors, particularly social preference but not social recognition, with no difference between the two CT points. This deficit of social preference induced by Rev-Erbα in 5-HTDR-specific mice is functionally associated with real-time elevated neuron activity and 5-HT levels at dusk, as determined by fiber-photometry imaging sensors. Moreover, optogenetic inhibition of DR to nucleus accumbens (NAc) 5-HTergic circuit restored the impairment of social preference in 5-HTDR-specific REV-ERBα cKO mice. These results suggest the significance of the circadian regulation of 5-HT levels by REV-ERBα in regulating social interaction behaviors.


Subject(s)
Circadian Rhythm , Nuclear Receptor Subfamily 1, Group D, Member 1 , Social Behavior , Animals , Mice , Circadian Rhythm/genetics , Dorsal Raphe Nucleus/metabolism , Mammals/metabolism , Mice, Knockout , Neurons/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Serotonin , Social Interaction
6.
J Ethn Subst Abuse ; : 1-13, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37652461

ABSTRACT

An alcohol-induced blackout suggested to be related to a rapid increase in blood alcohol concentration and it is closely related to long-term memory creation. Blackout has been experienced by 35% of the general population and over 50% of university student population. In addition, it has been shown that blackout could be a precursor of injury risk. However, the rate of blackout and blackout related negative consequences in Korean university students have rarely been studied. Therefore, the objective of this study was to determine the blackout experience rate and its negative consequences among students from four universities in Korea. A survey was conducted among university students located in Pusan, Korea in 2013. Demographic and blackout related information were collected through self-report questionnaire, including blackout experience, age of first blackout, and negative consequences of blackout. Descriptive statistical analysis was performed for collected data. Of a total of 470 subjects (Male = 217, Female = 253) surveyed, 190 (40.4%) subjects had experienced a blackout at some points in their lives. The majority (86.3%) of them experienced the first blackout between 20-25 years old. Among those who had experienced a blackout, 57.0% reported that they could not remember how they went home at the end of the night, 8.1%, 7.6%, 3.1%, and 2.2% reported that they had bodily injuries, argument, physical or personal fight, and sexual-related incidences, respectively. This study shows that many Korean university students have experienced blackouts and related negative events. These results suggest that more systematic drinking control strategy is required for Korean university students.

7.
Cell Mol Gastroenterol Hepatol ; 16(3): 325-339, 2023.
Article in English | MEDLINE | ID: mdl-37270061

ABSTRACT

BACKGROUND & AIMS: Acute and chronic gastric injury induces alterations in differentiation within the corpus of the stomach called pyloric metaplasia. Pyloric metaplasia is characterized by the death of parietal cells and reprogramming of mitotically quiescent zymogenic chief cells into proliferative, mucin-rich spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Overall, pyloric metaplastic units show increased proliferation and specific expansion of mucous lineages, both by proliferation of normal mucous neck cells and recruitment of SPEM cells. Here, we identify Sox9 as a potential gene of interest in the regulation of mucous neck and SPEM cell identity in the stomach. METHODS: We used immunostaining and electron microscopy to characterize the expression pattern of SRY-box transcription factor 9 (SOX9) during murine gastric development, homeostasis, and injury in homeostasis, after genetic deletion of Sox9 and after targeted genetic misexpression of Sox9 in the gastric epithelium and chief cells. RESULTS: SOX9 is expressed in all early gastric progenitors and strongly expressed in mature mucous neck cells with minor expression in the other principal gastric lineages during adult homeostasis. After injury, strong SOX9 expression was induced in the neck and base of corpus units in SPEM cells. Adult corpus units derived from Sox9-deficient gastric progenitors lacked normal mucous neck cells. Misexpression of Sox9 during postnatal development and adult homeostasis expanded mucous gene expression throughout corpus units including within the chief cell zone in the base. Sox9 deletion specifically in chief cells blunts their reprogramming into SPEM. CONCLUSIONS: Sox9 is a master regulator of mucous neck cell differentiation during gastric development. Sox9 also is required for chief cells to fully reprogram into SPEM after injury.


Subject(s)
Chief Cells, Gastric , Animals , Mice , Chief Cells, Gastric/metabolism , Gastric Mucosa/metabolism , Metaplasia/metabolism , Parietal Cells, Gastric/metabolism , Stomach
8.
Nanoscale ; 15(4): 1537-1541, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36625199

ABSTRACT

Exploring the atomic or molecular transport properties of two-dimensional materials is vital to understand their inherent functions and, thus, to expedite their use in various applications. Herein, a surface-enhanced Raman spectroscopy (SERS)-based in situ analytical tool for the sensitive and rapid monitoring of hydrogen transport through graphene is reported. In this method, a reducing agent, which can provide hydrogen species, and a Raman dye self-assembled on a SERS platform are separated by a graphene membrane, and the reduction of the Raman dye by hydrogen species transferred through graphene is monitored with SERS. For validating the efficacy of our method, the catalytic reduction of surface-bound 4-nitrothiophenol by sodium borohydride was chosen in this study. The experimental results distinctly demonstrate that the high sensitivity and rapid detection ability of SERS can allow the effective analysis of the hydrogen transport properties of graphene.

9.
J Cyst Fibros ; 22(2): 306-312, 2023 03.
Article in English | MEDLINE | ID: mdl-36572614

ABSTRACT

BACKGROUND: Adults with cystic fibrosis (CF) develop exuberant inflammatory responses during pulmonary exacerbations (PEx) but whether distinct systemic inflammatory profiles can be identified and whether these associate with disparate treatment outcomes are unclear. We conducted a pilot study to address this question and hypothesized that CF adults with a pauci-inflammatory phenotype might derive less clinical benefit from intravenous (IV) antibiotic treatment than patients with other systemic inflammatory phenotypes. METHODS: Six proteins reflective of systemic inflammation were examined in 37 PEx from 28 unique CF subjects. We applied exploratory factor analysis and cluster analysis to identify biological clusters. Levels of blood proteins at PEx and clinical outcomes following IV antibiotic treatment were compared between clusters. RESULTS: Three clusters of PEx were identified. The pauci-inflammatory phenotype was characterized by lower levels of interleukin (IL)-1ß, IL-6, IL-10, tumor necrosis factor (TNF)-α, calprotectin, and C-reactive protein (CRP) (p < 0.05). Higher levels of IL-6 and IL-1ß were observed in the other 2 inflammatory clusters, but one of them was associated with higher calprotectin levels (p = 0.001) (neutrophil-predominant phenotype); whereas the other was associated with increased TNF-α and IL-10 levels (p < 0.001) (pro-inflammatory phenotype). A greater proportion of events from the neutrophil-predominant phenotype presented with acute respiratory symptoms and a larger decrease in ppFEV1 from baseline to hospital admission than the other two inflammatory phenotypes (p = 0.03). CONCLUSIONS: Three distinct inflammatory phenotypes were identified at PEx admission and each presented with unique clinical characteristics.


Subject(s)
Cystic Fibrosis , Pneumonia , Humans , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , Cystic Fibrosis/diagnosis , Interleukin-10/therapeutic use , Pilot Projects , Interleukin-6 , Anti-Bacterial Agents/therapeutic use , Phenotype
10.
Mol Biol Rep ; 50(1): 267-277, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36331742

ABSTRACT

Expression changes for tryptophan hydroxylase 1 (TPH1), the rate-limiting enzyme in serotonin synthesis, by environmental glutamine (GLN) were examined in mouse mastocytoma-derived P815-HTR cells. GLN-treated cells exhibited a robust increase in TPH1 mRNA after a 6 h exposure to GLN. 6-Diazo-5-oxo-L-norleucine (DON), a glutamine-utilizing glutaminase inhibitor, significantly inhibited the GLN-induction of TPH1 mRNA. Nuclear run-on assays and mRNA decay experiments demonstrated that the primary mechanism leading to increased TPH1 mRNA levels was not due to transcriptional changes, but rather due to increased TPH1 RNA stability induced by GLN. Treatment with GLN also led to activation of p38 MAP kinase, but not p42/44 MAPK. In addition, SB203580, a p38 MAP kinase specific inhibitor, completely abolished the GLN-mediated increase of TPH1 mRNA levels, suggesting the pathway stabilizing TPH1 mRNA might be mediated by the activated p38 MAP kinase pathway. Additionally, SB203580 significantly reduced the stability of TPH1 mRNA, and this reduction of the stability was not affected by GLN in the culture medium, implying a sequential signaling from GLN being mediated by p38 MAP kinase, resulting in alteration of TPH1 mRNA stability. TPH1 mRNA stability loss was also dependent on de novo protein synthesis as shown by treatment of cells with a transcriptional/translational blocker. We provide evidence that TPH1 mRNA levels are increased in response to increased exogenous GLN in mouse mastocytoma cells via a stabilization of TPH1 mRNA due to the activity of the p38 MAP kinase.


Subject(s)
Mastocytoma , Mitogens , Mice , Animals , Glutamine , RNA, Messenger/genetics , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Enzyme Inhibitors/pharmacology , Tryptophan Hydroxylase/genetics
11.
Plants (Basel) ; 11(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36365311

ABSTRACT

Autophagy is an evolutionarily well-conserved cellular catabolic pathway in eukaryotic cells and plays an important role in cellular processes. Autophagy is regulated by autophagy-associated (ATG) proteins. Among these ATG proteins, the ubiquitin-like protein ATG8/LC3 is essential for autophagosome formation and function. In this study, the potato StATG8 family showed clade I and clade II with significantly different sequences. Expression of the StATG8 family was also increased in senescence. Interestingly, the expression of the StATG8 and other core StATG genes decreased in potato tubers as the tubers matured. The StATG8 family also responded to a variety of stresses such as heat, wounding, salicylic acid, and salt stress. We also found that some Arabidopsis WRKY transcription factors interacted with the StATG8 protein in planta. Based on group II-a WRKY, StATG8-WRKY interaction is independent of the ATG8 interacting motif (AIM) or LC3 interacting region (LIR) motif. This study showed that the StATG8 family had diverse functions in tuber maturation and multiple stress responses in potatoes. Additionally, StATG8 may have an unrelated autophagy function in the nucleus with the WRKY transcription factor.

12.
Rev Sci Instrum ; 93(6): 063503, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35778011

ABSTRACT

The Korea Atomic Energy Research Institute has recently proposed and developed a novel cesium-free negative hydrogen/deuterium ion source system based on two pulsed plasma sources for fusion and particle accelerator applications. The main feature of this ion source system is the use of both magnetic filters and plasma pulsing (also called the temporal filter). The system operates with two alternate pulsing sequences related to the respective plasma sources, thereby switching the plasmas in the after-glow state in an alternating manner. This study investigates the temporal behavior of deuterium negative ions in the system in a qualitative way by conducting a time-resolved measurement of laser photodetachment current commensurate with the negative ion density. In preliminary experiments, the current in the initial after-glow state remains higher than in the active-glow state identical to a steady-state continuous wave plasma, and the ratio reaches a maximum of about three times. This indicates that the pulsing gives highly efficient negative ion volume formation. Furthermore, it is observed that the time duration when the current is maintained at high values can be prolonged (or modulated) with the alternate dual pulsing, which is not possible with conventional single pulsing. These results provide a clue that the multi-pulsed ion source system may offer a continuous supply of negative ions at high densities and consequently become an alternative to cesium seeded ion sources.

14.
J Med Food ; 25(7): 778-786, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35834633

ABSTRACT

We investigated the effect of black sticky rice with giant embryo (BSRGE) extract known to contain high levels of gamma-aminobutyric acid (GABA) on alcohol cravings in social drinkers. A total of 41 subjects were divided into a BSRGE extract group (G group: n = 21) and a placebo group (P group: n = 20), and a randomized placebo-controlled experiment was performed for 12 weeks. The G group took the BSRGE extracts that contained 30 mg of GABA per day. (1) In the Pennsylvania Alcohol Craving Scale, there was a tendency for time and group interaction between the two groups (P = .087) on the total score. (2) In the Obsessive-Compulsive Drinking Scale (OCDS), there was a significance for time and group interaction between the G and P groups (P = .011) on the obsessive subscale. The total score of the OCDS showed significant time and group interactions between the G and P groups (P = .011). Our results showed that the extract of BSRGE containing a high level of GABA significantly reduced alcohol cravings in Korean social drinkers.


Subject(s)
Alcoholism , Oryza , Alcohol Drinking , Alcoholism/drug therapy , Craving , Humans , Plant Extracts/therapeutic use , Republic of Korea , gamma-Aminobutyric Acid
15.
Cancers (Basel) ; 14(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35681744

ABSTRACT

Studies in targeting metabolism in cancer cells have shown the flexibility of cells in reprogramming their pathways away from a given metabolic block. Such behavior prompts a combination drug approach in targeting cancer metabolism, as a single compound may not address the tumor intractability. Overall, mammalian target of rapamycin complex 1 (mTORC1) signaling has been implicated as enabling metabolic escape in the case of a glycolysis block. From a library of compounds, the tyrosine kinase inhibitor ponatinib was screened to provide optimal reduction in metabolic activity in the production of adenosine triphosphate (ATP), pyruvate, and lactate for multiple myeloma cells; however, these cells displayed increasing levels of oxidative phosphorylation (OXPHOS), enabling them to continue generating ATP, although at a slower pace. The combination of ponatinib with the mTORC1 inhibitor, sirolimus, blocked OXPHOS; an effect also manifested in activity reductions for hexokinase 2 (HK2) and glucose-6-phosphate isomerase (GPI) glycolysis enzymes. There were also remarkably higher levels of reactive oxygen species (ROS) produced in mouse xenografts, on par with increased glycolytic block. The combination of ponatinib and sirolimus resulted in synergistic inhibition of tumor xenografts with no overt toxicity in treated mice for kidney and liver function or maintaining weight.

16.
Mol Cells ; 45(8): 588-602, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35754370

ABSTRACT

Various RNA-binding proteins (RBPs) are key components in RNA metabolism and contribute to several neurodevelop-mental disorders. To date, only a few of such RBPs have been characterized for their roles in neocortex development. Here, we show that the RBP, Rbms1, is required for radial migration, polarization and differentiation of neuronal progenitors to neurons in the neocortex development. Rbms1 expression is highest in the early development in the developing cortex, with its expression gradually diminishing from embryonic day 13.5 (E13.5) to postnatal day 0 (P0). From in utero electroporation (IUE) experiments when Rbms1 levels are knocked down in neuronal progenitors, their transition from multipolar to bipolar state is delayed and this is accompanied by a delay in radial migration of these cells. Reduced Rbms1 levels in vivo also reduces differentiation as evidenced by a decrease in levels of several differentiation markers, meanwhile having no significant effects on proliferation and cell cycle rates of these cells. As an RNA binding protein, we profiled the RNA binders of Rbms1 by a cross-linked-RIP sequencing assay, followed by quantitative real-time polymerase chain reaction verification and showed that Rbms1 binds and stabilizes the mRNA for Efr3a, a signaling adapter protein. We also demonstrate that ectopic Efr3a can recover the cells from the migration defects due to loss of Rbms1, both in vivo and in vitro migration assays with cultured cells. These imply that one of the functions of Rbms1 involves the stabilization of Efr3a RNA message, required for migration and maturation of neuronal progenitors in radial migration in the developing neocortex.


Subject(s)
Neocortex , Animals , Cell Movement , DNA-Binding Proteins/metabolism , Humans , Mice , Neocortex/metabolism , Neurogenesis , Neurons/metabolism , RNA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
17.
Int J Mol Sci ; 23(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35562978

ABSTRACT

Caspase is a well-studied metazoan protease involved in programmed cell death and immunity in animals. Obviously, homologues of caspases with evolutionarily similar sequences and functions should exist in plants, and yet, they do not exist in plants. Plants contain structural homologues of caspases called metacaspases, which differ from animal caspases in a rather distinct way. Metacaspases, a family of cysteine proteases, play critical roles in programmed cell death during plant development and defense responses. Plant metacaspases are further subdivided into types I, II, and III. In the type I Arabidopsis MCs, AtMC1 and AtMC2 have similar structures, but antagonistically regulate hypersensitive response cell death upon immune receptor activation. This regulatory action is similar to caspase-1 inhibition by caspase-12 in animals. However, so far very little is known about the biological function of the other plant metacaspases. From the increased availability of genomic data, the number of metacaspases in the genomes of various plant species varies from 1 in green algae to 15 in Glycine max. It is implied that the functions of plant metacaspases will vary due to these diverse evolutions. This review is presented to comparatively analyze the evolution and function of plant metacaspases compared to caspases.


Subject(s)
Arabidopsis , Caspases , Animals , Apoptosis , Arabidopsis/metabolism , Caspases/metabolism , Cell Death , Plants/genetics , Plants/metabolism
18.
Plant Methods ; 18(1): 57, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35501866

ABSTRACT

BACKGROUND: The study of the regulatory mechanisms of evolutionarily conserved Nucleotide-binding leucine-rich repeat (NLR) resistance (R) proteins in animals and plants is of increasing importance due to understanding basic immunity and the value of various crop engineering applications of NLR immune receptors. The importance of temperature is also emerging when applying NLR to crops responding to global climate change. In particular, studies of pathogen effector recognition and autoimmune activity of NLRs in plants can quickly and easily determine their function in tobacco using agro-mediated transient assay. However, there are conditions that should not be overlooked in these cell death-related assays in tobacco. RESULTS: Environmental conditions play an important role in the immune response of plants. The system used in this study was to establish conditions for optimal hypertensive response (HR) cell death analysis by using the paired NLR RPS4/RRS1 autoimmune and AvrRps4 effector recognition system. The most suitable greenhouse temperature for growing plants was fixed at 22 °C. In this study, RPS4/RRS1-mediated autoimmune activity, RPS4 TIR domain-dependent cell death, and RPS4/RRS1-mediated HR cell death upon AvrRps4 perception significantly inhibited under conditions of 65% humidity. The HR is strongly activated when the humidity is below 10%. Besides, the leaf position of tobacco is important for HR cell death. Position #4 of the leaf from the top in 4-5 weeks old tobacco plants showed the most effective HR cell death. CONCLUSIONS: As whole genome sequencing (WGS) or resistance gene enrichment sequencing (RenSeq) of various crops continues, different types of NLRs and their functions will be studied. At this time, if we optimize the conditions for evaluating NLR-mediated HR cell death, it will help to more accurately identify the function of NLRs. In addition, it will be possible to contribute to crop development in response to global climate change through NLR engineering.

19.
Clin Psychopharmacol Neurosci ; 20(2): 343-349, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35466105

ABSTRACT

Objective: Capsaicin, the pungent analgesic substance of hot peppers which produces a burning sensation and pain is known to affect Substance P and central opioid activities. This experiment was designed to test the effect of capsaicin on alcohol consumption in C57BL/6 and DBA/2 mice. These two strains are known to differ in both their alcohol consumption and their endogenous opioid distribution and response to alcohol. It is hypothesized that this effect may be mediated by both increases Substance P and decreases beta-endorphin. Methods: After i.p. administration of 0.01 and 0.001 mg/kg of capsaicin with a vehicle or the vehicle alone as the control for eight days in C57BL/6 and DBA/2 mice on limited access alcohol model, Capsaicin's effects on 2-hour alcohol, 22-hours water, 24-hours food intake and body weight were studied. Results: In this study, as expected, C57BL/6 mice drank significantly more alcohol than DBA/2 mice under baseline conditions. Capsaicin at both doses tested significantly reduced baseline alcohol consumption in C57BL/6 but not DBA/2 mice. These effects were selective for alcohol as capsaicin did not disrupt food or water consumption. Conclusion: These results demonstrate that capsaicin differentially affects those mechanisms underlying alcohol consumption in two strains of mice known to differ in their preference for and consumption of alcohol. This effect is hypothesized to be related to differences in the response of the endogenous opioid system.

20.
Biomed Pharmacother ; 150: 113032, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35486977

ABSTRACT

In MYCN-amplified neuroblastoma (NB), we noticed that the single compound treatment with the HDAC inhibitor vorinostat led to a reprogramming of the glycolytic pathway in these cells. This reprogramming was upregulation of fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS), allowing the cells to generate ATP, albeit at a reduced rate. This behavior was dependent on reduced levels of MYCN and a corresponding increase in the levels of PPARD transcription factors. By integrating metabolic and functional studies in NB cells and mouse xenografts, we demonstrate a compensatory upregulation of FAO/OXPHOS metabolism that promotes resistance to HDAC inhibitors. From the additional compounds that could reverse this metabolic reprogramming, the mTORC1 inhibitor sirolimus was selected. Besides both a block of glycolysis and OXPHOS, the HDAC/mTORC1 inhibitor combination produced significantly higher levels of reactive oxygen species (ROS) in the treated cells and in xenograft tumor samples, also a consequence of increased glycolytic block. The lead compounds were also tested for changes in the message levels of the glycolytic enzymes and their pathway activity, and HK2 and GPI glycolytic enzymes were most affected at their RNA message level. This combination was seen with no overall toxicity in treated mice in terms of weight loss or liver/kidney function.


Subject(s)
Histone Deacetylase Inhibitors , Neuroblastoma , Animals , Cell Line, Tumor , Histone Deacetylase Inhibitors/pharmacology , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...