Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Chem Biol ; 5(4): 328-334, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38576720

ABSTRACT

Passive membrane permeability is an important property in drug discovery and biological probe design. To elucidate the cell-penetrating ability of oxadiazole-containing (Odz) peptides, we employed the Chloroalkane Penetration Assay. The present study demonstrates that Odz cyclic peptides can be highly cell-penetrant depending on the position of specific side chains and the chloroalkane tag. Solution NMR shows that Odz cyclic peptides adopt a ß-turn conformation. However, despite observing high cell penetration, we observed low passive permeability in experiments with artificial membranes. These findings highlight the complexity of controlling cell penetration for conformationally sensitive macrocycles and suggest that Odz cyclic peptides may provide a framework for designing cell-penetrant cyclic peptides.

2.
Angew Chem Int Ed Engl ; 62(5): e202214729, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36346911

ABSTRACT

Site-selective transformations of densely functionalized scaffolds have been a topic of intense interest in chemical synthesis. Herein we have repurposed the rarely used Cornforth rearrangement as a tool to effect a single-atom ring contraction in cyclic peptide backbones. Investigations into the kinetics of the rearrangement were carried out to understand the impact of electronic factors, ring size, and linker type on the reaction efficiency. Conformational analysis was undertaken and showed how subtle differences in the peptide backbone result in substrate-dependent reaction profiles. This methodology can now be used to perform conformation-activity studies. The chemistry also offers an opportunity to install building blocks that are not compatible with traditional C-to-N iterative synthesis of macrocycle precursors.


Subject(s)
Peptides, Cyclic , Peptides , Peptides/chemistry , Peptides, Cyclic/chemistry , Molecular Conformation , Kinetics
3.
J Am Chem Soc ; 143(13): 5166-5171, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33754700

ABSTRACT

We describe the development and use of composite two-dimensional barriers in macrocyclic backbones. These tunable constructs derive their mode of action from heterocyclic rearrangements. The Boulton-Katritzky reaction has been identified as a particularly versatile means to effect a composite barrier, allowing the examination of the influence of heterocycle translocation on conformation. Kinetic studies using 1H NMR have revealed that the in-plane atom movement is fast in 17, 18, 19-membered rings but slows down in 16-membered rings. The analysis by NMR and MD simulation experiments is consistent with the maintenance of rare cis-amide motifs during conformational interconversion. Taken together, our investigation demonstrates that heterocyclic rearrangement reactions can be used to control macrocyclic backbones and provides fundamental insights that may be applicable to the development of a wide range of other conformational control elements.

4.
Org Lett ; 22(23): 9210-9214, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33206539

ABSTRACT

The amidine functionality switches between hydrogen bond donor and acceptor roles depending on pH. Herein, the amidine was incorporated to select amides in cyclo(d-Ala-Pro-d-Phe-Pro-Gly). The unprotonated amidine-containing macrocyclic conformation resembles its oxoamide counterpart. Upon protonation, minimal alterations in the macrocyclic conformation were observed despite changes to the hydrogen bond network. The amidine disrupts hydrogen bonding at minimal steric cost, making it a useful functionality to study the effect of hydrogen bonding on the macrocyclic conformation.


Subject(s)
Amidines/chemistry , Dipeptides/chemistry , Peptides, Cyclic/chemistry , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Molecular Structure , Peptides, Cyclic/metabolism , Protein Conformation
5.
Chembiochem ; 21(7): 943-947, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31621172

ABSTRACT

We report a single-molecule radiotracer that can be labeled independently with 18 F-fluoride or radiometals (64 Cu, 177 Lu) in a single step. A prostate-specific membrane antigen (PSMA)-targeting ligand, armed with both an organotrifluoroborate and a metal-chelator (DOTA), was designed to optionally afford 18 F-, 64 Cu- or 177 Lu-labeled products that were injected into mice bearing prostate cancer (LNCaP) xenografts. PET/CT images and ex vivo biodistribution data show high, specific tumor uptake irrespective of which radionuclide is used, thereby demonstrating a new approach to combining, in a single molecule, 18 F-labeling capabilities for PET imaging with radiometalation for potential imaging and therapeutic applications.


Subject(s)
Precision Medicine , Radiopharmaceuticals/chemistry , Animals , Antigens, Surface/chemistry , Cell Line, Tumor , Copper Radioisotopes/chemistry , Fluorine Radioisotopes/chemistry , Glutamate Carboxypeptidase II/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Ligands , Lutetium/chemistry , Male , Mice , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Radioisotopes/chemistry , Radiopharmaceuticals/metabolism , Tissue Distribution , Transplantation, Heterologous
6.
Chem Rev ; 119(17): 9724-9752, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31411458

ABSTRACT

The conformational analysis of macrocycles is a complex and challenging problem. There are many factors that contribute to this complexity. These include a large number of degrees of freedom, transannular interactions such as hydrogen bonds and hydrophobic interactions, and a range of steric interactions, along with ring strain effects. To a greater extent than within acyclic molecules, these interactions within macrocycles are coupled such that changing one dihedral angle can significantly affect other dihedral angles, further complicating the situation. However, this coupling of bond rotations and transannular interactions enables the transmission of three-dimensional information from one side of a macrocycle to the other. Making relatively small structural modifications to a macrocycle can result in local conformational changes that propagate along the ring to affect distal structural features. The factors that control how such changes can propagate are poorly understood, and it is difficult to predict which modifications will result in significant conformational reorganizations of remote regions of a macrocycle. This review discusses examples where small structural modifications to macrocyclic scaffolds change the conformational preferences of structurally remote regions of the ring. We will highlight evidence provided for conformational changes triggered by remote substituents and explanations of how these changes might occur in an effort to further understand the factors that control such phenomena.

7.
Bioconjug Chem ; 30(4): 1210-1219, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30896929

ABSTRACT

DOTA is commonly used for radiometal chelation in molecular imaging. Yet in the absence of a radiometal, DOTA is hypothesized to promote renal clearance of 18F-labeled peptide tracers. In light of an increasing interest in the use of F18 for PET, here the effect of DOTA is evaluated for the first time with an 18F-labeled tracer and is found to significantly improve the quality of images acquired through positron emission tomography (PET). We chose to image the peptide LLP2A that recognizes the transmembrane protein very-late antigen 4 (VLA-4) that is overexpressed by many cancers. Since it is known that [18F]RBF3-PEG2-LLP2A derivatives gave low tumor uptake values and significant GI tract accumulation, this ligand thus represents an ideal means of testing the additive effects of a DOTA group on clearance while permitting a facile, user-friendly, one-step 18F-labeling. A newly designed RBF3-LLP2A bioconjugate with an appended DOTA moiety increased tumor uptake nearly 3-fold and reduced GI accumulation by more than 10-fold. The DOTA-AMBF3-PEG2-LLP2A was radiolabeled by isotope exchange and was purified by semiprep HPLC and C18 cartridge elution. Male C57BL/6J mice bearing B16-F10 melanoma tumors that overexpress the VLA-4 target were used to evaluate [18F]DOTA-AMBF3-PEG2-LLP2A using a combination of static and dynamic PET scans, biodistribution studies, and blocking controls at 1 h post injection (p.i.). The precursor peptide was synthesized and 18F-labeled to provide formulations with mean (±SD) radiochemical purities of 95.9 ± 1.8%, in radiochemical yields of 4.8 ± 2.9% having molar activities of 131.7 ± 50.3 GBq/µmol. In vivo static PET images of [18F]DOTA-AMBF3-PEG2-LLP2A provided clear tumor visualization, and biodistribution studies showed that tumor uptake was 9.46 ± 2.19% injected dose per gram of tissue (%ID/g) with high tumor/muscle and tumor/blood contrast ratios of ∼8 and ∼10, respectively. Blocking confirmed the specificity of [18F]DOTA-AMBF3-PEG2-LLP2A to VLA-4 in the tumor and the bone marrow. Dynamic PET showed clearance of [18F]DOTA-AMBF3-PEG2-LLP2A mainly via the renal pathway, wherein accumulation in the intestines was reduced 10-fold compared to our previously investigated LLP2A's, while spleen uptake was at levels similar to previously reported LLP2A-chelator radiotracers. [18F]DOTA-AMBF3-PEG2-LLP2A represents a promising VLA-4 radiotracer and provides key evidence as to how a DOTA appendage can significantly reduce GI uptake in favor of urinary excretion. Implications for the development of dual-isotope theranostics that exploit the use fluorine-18 for imaging and DOTA to chelate therapeutic metal cations for therapy are discussed.


Subject(s)
Chelating Agents/chemistry , Fluorine Radioisotopes/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Kidney/metabolism , Melanoma, Experimental/diagnostic imaging , Radiopharmaceuticals/chemistry , Animals , Chelating Agents/metabolism , Fluorine Radioisotopes/metabolism , Heterocyclic Compounds, 1-Ring/metabolism , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism
8.
Nucl Med Biol ; 61: 11-20, 2018 06.
Article in English | MEDLINE | ID: mdl-29597141

ABSTRACT

INTRODUCTION: The transmembrane α4ß1 integrin receptor, or very-late antigen 4 (VLA-4), is associated with tumor metastasis and angiogenesis, the development of chemotherapeutic drug resistance, and is overexpressed in multiple myelomas, osteosarcomas, lymphomas, leukemias, and melanomas. The peptidomimetic, LLP2A, is a high-affinity ligand with specificity for the extracellular portion of VLA-4 and several conjugates have been evaluated in vivo by NIR-fluorescence, 111In-SPECT and 68Ga- and 64Cu-PET imaging, but to date, not with 18F-PET. METHODS: Using two highly stable organotrifluoroborate prosthetic groups: ammoniumdimethyl-trifluoroborate (AMBF3) and a new N-pyridinyl-para-trifluoroborate (N-Pyr-p-BF3), both capable of facile aqueous 18F-labeling by isotope exchange (IEX), we present the first PET imaging evaluations of two [18F]R-BF3--PEG2-LLP2A tracers using VLA-4 overexpressing B16-F10 murine melanoma tumor mouse models. RESULTS: Here, we demonstrate successful one-step 18F-labeling of both conjugates with wet NCA [18F]F- in radiochemical yields of up to 11.6% within 75 min at molar activities of 40-100 GBq/µmol. Average tumor uptake values based on ex vivo biodistribution values were 4.4%ID/g (11) and 2.8%ID/g (12) using 18F-labeled LLP2A-conjugates with the two prosthetic groups: N-Pyr-p-BF3 (5) and alkyl-N,N-dimethylammonio-BF3 (AMBF3) (7), respectively, and was found to be target-specific as evidenced by in vivo blocking controls. Dynamic PET scanning and biodistribution studies revealed slow clearance of the [18F]R-BF3--PEG2-LLP2A tracers from the tumors, and also substantial uptake in the intestines, gall bladder, liver and bladder. Observed bone uptake was blockable, consistent with known VLA-4 expression in hematopoietic stem cells found in bone marrow. CONCLUSIONS: These studies show that these [18F]R-BF3--PEG2-LLP2A conjugates (11 and 12) are promising VLA-4 targeting radiotracers, yet, further optimization will be required to reduce uptake in the gastro-intestinal tract.


Subject(s)
Boric Acids/chemistry , Dipeptides/chemistry , Fluorine Radioisotopes , Integrin alpha4beta1/metabolism , Phenylurea Compounds/chemistry , Positron-Emission Tomography/methods , Animals , Biological Transport , Cell Line, Tumor , Dipeptides/metabolism , Dipeptides/pharmacokinetics , Melanoma, Experimental , Mice , Phenylurea Compounds/metabolism , Phenylurea Compounds/pharmacokinetics , Radioactive Tracers , Radiochemistry , Tissue Distribution
9.
Inorg Chem ; 56(8): 4271-4279, 2017 Apr 17.
Article in English | MEDLINE | ID: mdl-28345884

ABSTRACT

From stoichiometric amounts of CaO, Fe, and Se, pure powders and single crystals of quaternary [Formula: see text] can be obtained by solid-state reaction and self-flux growth, respectively. The as-synthesized compound exhibits a polymorphic crystal structure, where the two modifications have different stacking sequences of [Formula: see text] layers. The two polymorphs have similar unit cells but different crystal symmetries (Cmc21 and Pnma), of which the former is non-centrosymmetric. Fe is divalent (d6) and high-spin, as proven by X-ray spectroscopy, Mössbauer spectroscopy, and powder neutron diffraction data. The latter two, in combination with magnetic susceptibility and specific heat data, reveal a long-range antiferromagnetic spin order (TN = 160 K) with a minor spin canting. CaFeSeO is an electronic insulator, as confirmed by resistivity measurements and density functional theory calculations. The latter also suggest a relatively small energy difference between the two polymorphs, explaining their intimate intergrowth.

SELECTION OF CITATIONS
SEARCH DETAIL
...