Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Stem Cell ; 31(2): 181-195.e9, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38237587

ABSTRACT

In humans, balanced invasion of trophoblast cells into the uterine mucosa, the decidua, is critical for successful pregnancy. Evidence suggests that this process is regulated by uterine natural killer (uNK) cells, but how they influence reproductive outcomes is unclear. Here, we used our trophoblast organoids and primary tissue samples to determine how uNK cells affect placentation. By locating potential interaction axes between trophoblast and uNK cells using single-cell transcriptomics and in vitro modeling of these interactions in organoids, we identify a uNK cell-derived cytokine signal that promotes trophoblast differentiation at the late stage of the invasive pathway. Moreover, it affects transcriptional programs involved in regulating blood flow, nutrients, and inflammatory and adaptive immune responses, as well as gene signatures associated with disorders of pregnancy such as pre-eclampsia. Our findings suggest mechanisms on how optimal immunological interactions between uNK cells and trophoblast enhance reproductive success.


Subject(s)
Extravillous Trophoblasts , Uterus , Pregnancy , Female , Humans , Uterus/metabolism , Placentation/physiology , Trophoblasts , Killer Cells, Natural
2.
Cancers (Basel) ; 15(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37444472

ABSTRACT

Women with ovarian cancer have limited therapy options, with immunotherapy being unsatisfactory for a large group of patients. Tumor cells spread from the ovary or the fallopian tube into the abdominal cavity, which is commonly accompanied with massive ascites production. The ascites represents a unique peritoneal liquid tumor microenvironment with the presence of both tumor and immune cells, including cytotoxic lymphocytes. We characterized lymphocytes in ascites from patients with high-grade serous ovarian cancer. Our data reveal the presence of NK and CD8+ T lymphocytes expressing CD103 and CD49a, which are markers of tissue residency. Moreover, these cells express high levels of the inhibitory NKG2A receptor, with the highest expression level detected on tissue-resident NK cells. Lymphocytes with these features were also present at the primary tumor site. Functional assays showed that tissue-resident NK cells in ascites are highly responsive towards ovarian tumor cells. Similar results were observed in an in vivo mouse model, in which tissue-resident NK and CD8+ T cells were detected in the peritoneal fluid upon tumor growth. Together, our data reveal the presence of highly functional lymphocyte populations that may be targeted to improve immunotherapy for patients with ovarian cancer.

3.
Eur J Immunol ; 52(7): 1190-1193, 2022 07.
Article in English | MEDLINE | ID: mdl-35416292

ABSTRACT

The molecular networks that regulate natural killer (NK) cell functions are not completely understood. Here, we present a workflow for efficient delivery of siRNA into human NK cells without compromising viability. This methodology represents a promising approach for rapidly interrogating gene functions in primary human NK cells.


Subject(s)
Killer Cells, Natural , Humans , RNA, Small Interfering/genetics
4.
Cell Rep ; 38(10): 110503, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35235832

ABSTRACT

Natural killer (NK) cells are innate immune cells that contribute to host defense against virus infections. NK cells respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and are activated in patients with acute coronavirus disease 2019 (COVID-19). However, by which mechanisms NK cells detect SARS-CoV-2-infected cells remains largely unknown. Here, we show that the Non-structural protein 13 of SARS-CoV-2 encodes for a peptide that is presented by human leukocyte antigen E (HLA-E). In contrast with self-peptides, the viral peptide prevents binding of HLA-E to the inhibitory receptor NKG2A, thereby rendering target cells susceptible to NK cell attack. In line with these observations, NKG2A-expressing NK cells are particularly activated in patients with COVID-19 and proficiently limit SARS-CoV-2 replication in infected lung epithelial cells in vitro. Thus, these data suggest that a viral peptide presented by HLA-E abrogates inhibition of NKG2A+ NK cells, resulting in missing self-recognition.


Subject(s)
COVID-19 , Histocompatibility Antigens Class I , Killer Cells, Natural , Methyltransferases , NK Cell Lectin-Like Receptor Subfamily C , RNA Helicases , SARS-CoV-2 , Viral Nonstructural Proteins , COVID-19/immunology , Histocompatibility Antigens Class I/immunology , Humans , Killer Cells, Natural/immunology , Methyltransferases/immunology , NK Cell Lectin-Like Receptor Subfamily C/immunology , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Peptides/metabolism , RNA Helicases/immunology , Viral Nonstructural Proteins/immunology , HLA-E Antigens
5.
Front Immunol ; 12: 607669, 2021.
Article in English | MEDLINE | ID: mdl-34234770

ABSTRACT

Innate lymphoid cells (ILCs) are the most abundant immune cells in the uterine mucosa both before and during pregnancy. Circumstantial evidence suggests they play important roles in regulating placental development but exactly how they contribute to the successful outcome of pregnancy is still unclear. Uterine ILCs (uILCs) include subsets of tissue-resident natural killer (NK) cells and ILCs, and until recently the phenotype and functions of uILCs were poorly defined. Determining the specific roles of each subset is intrinsically challenging because of the rapidly changing nature of the tissue both during the menstrual cycle and pregnancy. Single-cell RNA sequencing (scRNAseq) and high dimensional flow and mass cytometry approaches have recently been used to analyse uILC populations in the uterus in both humans and mice. This detailed characterisation has significantly changed our understanding of the heterogeneity within the uILC compartment. It will also enable key clinical questions to be addressed including whether specific uILC subsets are altered in infertility, miscarriage and pregnancy disorders such as foetal growth restriction and pre-eclampsia. Here, we summarise recent advances in our understanding of the phenotypic and functional diversity of uILCs in non-pregnant endometrium and first trimester decidua, and review how these cells may contribute to successful placental development.


Subject(s)
Immunity, Innate , Killer Cells, Natural/immunology , Lymphocytes/immunology , Pregnancy Outcome , Uterus/cytology , Uterus/immunology , Animals , Cell Count , Cytokines/immunology , Endometrium/cytology , Endometrium/immunology , Female , Humans , Killer Cells, Natural/classification , Killer Cells, Natural/physiology , Mice , Phenotype , Pregnancy
6.
Immunity ; 54(6): 1257-1275.e8, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34051148

ABSTRACT

The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing, and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , Lymphocyte Activation/immunology , SARS-CoV-2/immunology , Biomarkers , CD8-Positive T-Lymphocytes/metabolism , COVID-19/diagnosis , COVID-19/genetics , Cytokines/metabolism , Disease Susceptibility , Gene Expression Profiling , Humans , Inflammation Mediators/metabolism , Longitudinal Studies , Lymphocyte Activation/genetics , Oxidative Phosphorylation , Phenotype , Prognosis , Reactive Oxygen Species/metabolism , Severity of Illness Index , Transcriptome
7.
Immunity ; 54(6): 1231-1244.e4, 2021 06 08.
Article in English | MEDLINE | ID: mdl-33887202

ABSTRACT

The conserved CD94/NKG2A inhibitory receptor is expressed by nearly all human and ∼50% of mouse uterine natural killer (uNK) cells. Binding human HLA-E and mouse Qa-1, NKG2A drives NK cell education, a process of unknown physiological importance influenced by HLA-B alleles. Here, we show that NKG2A genetic ablation in dams mated with wild-type males caused suboptimal maternal vascular responses in pregnancy, accompanied by perturbed placental gene expression, reduced fetal weight, greater rates of smaller fetuses with asymmetric growth, and abnormal brain development. These are features of the human syndrome pre-eclampsia. In a genome-wide association study of 7,219 pre-eclampsia cases, we found a 7% greater relative risk associated with the maternal HLA-B allele that does not favor NKG2A education. These results show that the maternal HLA-B→HLA-E→NKG2A pathway contributes to healthy pregnancy and may have repercussions on offspring health, thus establishing the physiological relevance for NK cell education. VIDEO ABSTRACT.


Subject(s)
Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily C/immunology , NK Cell Lectin-Like Receptor Subfamily D/immunology , Uterus/immunology , Animals , Female , Genome-Wide Association Study/methods , HLA Antigens/immunology , Humans , Male , Mice , Mice, Inbred C57BL , Placenta/immunology , Pregnancy , Pregnancy Outcome
8.
Nat Commun ; 11(1): 381, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959757

ABSTRACT

During early pregnancy, decidual innate lymphoid cells (dILCs) interact with surrounding maternal cells and invading fetal extravillous trophoblasts (EVT). Here, using mass cytometry, we characterise five main dILC subsets: decidual NK cells (dNK)1-3, ILC3s and proliferating NK cells. Following stimulation, dNK2 and dNK3 produce more chemokines than dNK1 including XCL1 which can act on both maternal dendritic cells and fetal EVT. In contrast, dNK1 express receptors including Killer-cell Immunoglobulin-like Receptors (KIR), indicating they respond to HLA class I ligands on EVT. Decidual NK have distinctive organisation and content of granules compared with peripheral blood NK cells. Acquisition of KIR correlates with higher granzyme B levels and increased chemokine production in response to KIR activation, suggesting a link between increased granule content and dNK1 responsiveness. Our analysis shows that dILCs are unique and provide specialised functions dedicated to achieving placental development and successful reproduction.


Subject(s)
Decidua/cytology , Immunity, Innate , Killer Cells, Natural/immunology , Lymphocyte Subsets/immunology , Placentation/immunology , Animals , Cell Communication/immunology , Chemokines, C/immunology , Chemokines, C/metabolism , Decidua/growth & development , Decidua/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , K562 Cells , Lymphocyte Activation , Mice , Pregnancy , Receptors, KIR/immunology , Receptors, KIR/metabolism , Trophoblasts/immunology , Trophoblasts/metabolism
10.
J Immunol ; 201(9): 2593-2601, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30249807

ABSTRACT

Killer-cell Ig-like receptor (KIR) genes are inherited as haplotypes. They are expressed by NK cells and linked to outcomes of infectious diseases and pregnancy in humans. Understanding how genotype relates to phenotype is difficult because of the extensive diversity of the KIR family. Indeed, high-resolution KIR genotyping and phenotyping in single NK cells in the context of disease association is lacking. In this article, we describe a new method to separate NK cells expressing allotypes of the KIR2DL1 gene carried by the KIR A haplotype (KIR2DL1A) from those expressing KIR2DL1 alleles carried by the KIR B haplotype (KIR2DL1B). We find that in KIR AB heterozygous individuals, different KIR2DL1 allotypes can be detected in both peripheral blood and uterine NK cells. Using this new method, we demonstrate that both blood and uterine NK cells codominantly express KIR2DL1A and KIR2DL1B allotypes but with a predominance of KIR2DL1A variants, which associate with enhanced NK cell function. In a case-control study of pre-eclampsia, we show that KIR2DL1A, not KIR2DL1B, associates with increased disease risk. This method will facilitate our understanding of how individual KIR2DL1 allelic variants affect NK cell function and contribute to disease risk.


Subject(s)
Genetic Predisposition to Disease/genetics , Killer Cells, Natural/immunology , Pre-Eclampsia/genetics , Receptors, KIR2DL1/genetics , Alleles , Antibodies, Monoclonal/immunology , Case-Control Studies , Cell Line , Female , Flow Cytometry , Haplotypes/genetics , Humans , Pre-Eclampsia/epidemiology , Pregnancy , Receptors, KIR2DL1/classification , Receptors, KIR2DL1/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...