Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
Environ Pollut ; 349: 123993, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38636838

ABSTRACT

Landfill is a huge pathogen reservoir and needs special attention. Herein, the distribution and spread risk of pathogen were assessed in excavated landfill scenario. The results show that landfill excavation will greatly increase the risk of environmental microbial contamination. The highest total concentration of culturable bacteria among landfill refuse, topsoil and plant leaves was found to be as high as 1010 CFU g-1. Total coliforms, Hemolytic bacteria, Staphylococcus aureus, Salmonella, Enterococci, and Fecal coliforms were detected in the landfill surrounding environment. Notably, pathogens were more likely to adhere to plant leaves, making it an important source of secondary pathogens. The culturable bacteria concentration in the air samples differed with the landfill zone with different operation status, and the highest culturable bacteria concentration was found in the excavated area of the landfill (3.3 × 104 CFU m-3), which was the main source of bioaerosol release. The distribution of bioaerosols in the downwind outside of the landfill showed a tendency of increasing and then decreasing, and the highest concentration of bioaerosols outside of the landfill (6.56 × 104 CFU m-3) was significantly higher than that in the excavated area of the landfill. The risk of respiratory inhalation was the main pathway leading to infection, whereas the HQin (population inhalation hazardous quotient) at 500 m downwind the excavation landfill was still higher than 1, indicating that the neighboring residents were exposed to airborne microbial pollutants. The results of the study provide evidence for bioaerosols control protective measures taken to reduce health risk from the excavated landfill.


Subject(s)
Air Microbiology , Environmental Monitoring , Waste Disposal Facilities , Bacteria/isolation & purification , Refuse Disposal , Aerosols/analysis , Soil Microbiology , Risk Assessment
2.
Environ Res ; 252(Pt 3): 119016, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38677405

ABSTRACT

Household garbage rooms release abundant bioaerosols and are an important source of pathogens; however, information on the distribution and survival patterns of pathogens in different waste components is limited. In this study, a culture method and 16S rRNA high-throughput sequencing were used to determine bacterial communities, culturable pathogens, and human bacterial pathogens (HBPs). The results showed that abundant culturable bacteria were detected in all waste types, and a large number of S. aureus was detected on the surface of recyclable wastes, whereas S. aureus, total coliforms, Salmonella, Enterococcus, and hemolytic bacteria were detected in food waste and other waste. The activities of these detected pathogenic bacteria decreased after 24 h of storage but re-activated within one week. Factors affecting the emergence of pathogens varied with different waste components. Sequencing results showed that Pseudomonas, Acinetobacter, and Burkholderia were abundant in the waste samples, whereas Achromobacter, Exiguobacteriums, Bordetella, and Corynebacterium were the primary pathogens in the bioaerosol and wall attachment. The results of traceability analysis showed that bioaerosol microbes were mainly derived from raw kitchen waste (5.98%) and plastic and paper contaminated with food waste (19.93%) in garbage rooms. In addition, bioaerosols were the main source of microflora in the wall attachment, which possessed high HBP diversity and required more attention. These findings will help in understanding the microbial hazards in different waste components and provide guidance for the control and risk reduction of bioaerosols during waste management and recycling.

3.
Lupus ; 33(5): 470-480, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442229

ABSTRACT

OBJECTIVE: This study aimed to investigate the correlation between positive psychological capital, post-traumatic growth, social support, and quality of life (QOL) in patients with systemic lupus erythematosus (SLE). METHODS: A cross-sectional study was conducted at the First Affiliated Hospital of Xinjiang Medical University from October 2022 to May 2023. A sample of 330 hospitalized SLE patients was selected for this study. The collected data included demographic information, the SLE disease activity index, the Positive Mental Capital Questionnaire, the Chinese version of the Post-Traumatic Growth Scale, the Social Support Rating Scale, and the Chinese version of the Lupus Quality of Life Scale. RESULTS: The QOL score among the 330 SLE patients was measured as M(P25, P75) of 105 (83.00,124.00). Positive psychological capital, post-traumatic growth, and social support demonstrated significant positive correlations with the QOL in SLE patients (p < 0.05). Multiple linear regression analysis revealed that literacy, disease level, disease duration, occupation, marital status, psychological capital, social support, and post-traumatic growth were influential factors associated with the QOL in SLE patients. CONCLUSION: Medical professionals should be attentive to the psychological well-being of SLE patients and should consider implementing early psychological interventions. These interventions are crucial for enhancing the QOL for individuals diagnosed with SLE.


Subject(s)
Lupus Erythematosus, Systemic , Posttraumatic Growth, Psychological , Humans , Quality of Life/psychology , Cross-Sectional Studies , Lupus Erythematosus, Systemic/complications , Social Support , Surveys and Questionnaires
4.
J Environ Manage ; 351: 119784, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081091

ABSTRACT

During the long-term stabilization process of landfills, the pressure field undergoes constant changes. This study constructed dynamic pressure changes scenarios of high-pressure differentials (0.6 MPa) and low-pressure differentials (0.2 MPa) in the landfill pressure field at 25 °C and 50 °C, and investigated the sulfate reduction behavior in response to landfill dynamic pressure changes. The results showed that the pressurization or depressurization of high-pressure differentials caused more significant differences in sulfate reduction behavior than that of low-pressure differentials. The lowest hydrogen sulfide (H2S) release peak concentration under pressurization was only 29.67% of that under initial pressure condition; under depressurization, the highest peak concentration of H2S was up to 21,828 mg m-3, posing a serious risk of H2S pollution. Microbial community and correlation analysis showed that pressure had a negative impact on the sulfate-reducing bacteria (SRB) community, and the SRB community adjusted its structure to adapt to pressure changes. Specific SRBs were further enriched with pressure changes. Differential H2S release behavior under pressure changes in the 25 °C pressure environments were mediated by Desulfofarcimen (ASV343) and Desulfosporosinus (ASV1336), while Candidatus Desulforudis (ASV24) and Desulfohalotomaculum (ASV94) played a key role at 50 °C. This study is helpful in the formulation of control strategies for the source of odor pollution in landfills.


Subject(s)
Desulfovibrio , Hydrogen Sulfide , Hydrogen Sulfide/chemistry , Waste Disposal Facilities , Sulfates/chemistry
5.
Waste Manag ; 171: 491-501, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37806157

ABSTRACT

The behavior of sulfate reduction, which was the source of hydrogen sulfide (H2S) odor, was investigated under changing pressure and temperature conditions inside landfills. The results showed that the release of H2S and methyl mercaptan (MM) was significantly inhibited at 25 °C and 50 °C under pressure, and the highest H2S and MM concentrations released were only 0.82 %-1.30 % and 1.87 %-4.32 % of atmospheric pressure, respectively. Analysis of the microbial community structure and identification of sulfate-reducing bacteria (SRB) revealed that temperature significantly altered the microbial community in the landfill environment, while pressure inhibited some bacteria and induced the growth and reproduction of specific bacteria. Key SRB (Desulfosporosinus-ASV212, Desulfitibacter-ASV1744) mediated differentiated sulfate reduction behavior in the pressure-bearing environment at 25 °C, while key SRB (Dethiobacter-ASV177, Desulfitibacter-ASV2355 and ASV316) were involved at 50 °C. This study provides a theoretical basis for the formulation of landfill gas management and control strategies.

6.
Waste Manag ; 170: 297-307, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37738757

ABSTRACT

Landfills are reservoirs of antibiotic resistance genes (ARGs) and pathogens, and humans are exposed to these pollutants during extensive excavation of old landfills. However, the microbial contamination risk of landfilled waste with different ages has not been assessed. In this study, human bacterial pathogens (HBPs), ARGs, and virulence factors (VFs) were systematically determined using metagenomic analysis. Results showed that the abundance of HBPs, ARGs, and VFs increased with landfill age, the percentage of HBPs in refuse with deposit age of 10-12 years (Y10) was 23.75 ± 0.49%, which was higher than that in fresh refuse (Y0, 17.99 ± 0.14%) and refuse with deposit age of 5-6 years (Y5, 19.14 ± 0.15%), indicating that old refuse had higher microbial contamination risk than fresh refuse. Multidrug, macrolide, lincosamide, streptogramine, and tetracycline resistance genes were the primary ARGs, whereas lipooligosaccharides, type IV pili, and polar flagella were the dominant VFs in refuse. The HBPs showed a significant positive correlation with ARGs and VFs. Listeria monocytogenes, Salmonella enterica, Streptococcus pneumoniae, Acinetobacter baumannii, and Escherichia coli possibly possess both multiple ARGs and VFs and could be listed as high-risk HBPs in refuse. Mobile genetic elements, especially transposons, showed positive correlations with most ARGs and VFs, and they were identified as the primary factors accounting for the variations in ARGs and VFs. These findings will help understand the spread of ARGs and VFs in landfills and evaluate the potential risk of microbiological contamination in refuse of different landfill ages, thus providing guidance for preventing disease infection during landfill excavations.

7.
J Med Virol ; 95(8): e28996, 2023 08.
Article in English | MEDLINE | ID: mdl-37515485

ABSTRACT

In somatic cells, microRNAs (miRNAs) bind to the genomes of RNA viruses and influence their translation and replication. In London and Berlin samples represented in GISAID database, we traced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages and divided these sequenced in two groups, "Ancestral variants" and "Omicrons," and analyzed them through the prism of the tissue-specific binding between host miRNAs and viral messenger RNAs. We demonstrate a significant number of miRNA-binding sites in the NSP4 region of the SARS-CoV-2 genome, with evidence of evolutionary pressure within this region exerted by human intestinal miRNAs. Notably, in infected cells, NSP4 promotes the formation of double-membrane vesicles, which serve as the scaffolds for replication-transcriptional complexes and protect viral RNA from intracellular destruction. In 3 years of selection, the loss of many miRNA-binding sites in general and those within the NSP4 in particular has shaped the SARS-CoV-2 genomes. With that, the descendants of the BA.2 variants were promoted as dominant strains, which define current momentum of the pandemics.


Subject(s)
COVID-19 , MicroRNAs , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , COVID-19/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Binding Sites , Berlin , Genome, Viral
8.
Sci Total Environ ; 887: 164050, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37178843

ABSTRACT

Antibiotics and microplastics (MPs) have become critical concerns worldwide because of their increasing amount and ecological risks to ecosystems. However, how MPs exposure affects the bioaccumulation and risks of antibiotics in waterfowls remains poorly understood. In this study, Muscovy ducks were exposed to single and combined contamination with polystyrene MPs and chlortetracycline (CTC) for 56 days, and the effects of MPs on CTC bioaccumulation and their risks in duck intestines were investigated. MPs exposure reduced the bioaccumulation of CTC in the intestine and liver of ducks and increased their fecal CTC excretion. MPs exposure caused severe oxidative stress, inflammatory response, and intestinal barrier damages. Microbiome analysis showed that MPs exposure induced microbiota dysbiosis by increasing the abundance of Streptococcus and Helicobacter, the increase of which may exacerbate intestinal damages. Co-exposure to MPs and CTC alleviated the intestinal damage by regulating the gut microbiome. Metagenomic sequencing revealed that the combined exposure to MPs and CTC increased the abundance of Prevotella, Faecalibacterium, and Megamonas and incidence of total antibiotic resistance genes (ARGs), especially tetracycline ARGs subtypes in the gut microbiota. The results obtained herein provide new insights into the potential risks of polystyrene MPs and antibiotics in waterfowls living in aquatic environments.


Subject(s)
Chlortetracycline , Gastrointestinal Microbiome , Microbiota , Animals , Microplastics , Anti-Bacterial Agents/pharmacology , Plastics , Ducks , Polystyrenes , Chlortetracycline/pharmacology , Intestines
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-994602

ABSTRACT

Objective:Based on experience of robotic gastrointestinal surgery at the Department of General Surgery, Clinical Medicine Center of Gansu Provincial Hospital, this study explored the principles and methods of trocar layout for robotic "3+2" mode gastrointestinal surgery, suitable for beginners.Methods:From Apr 2017 to Oct 2022, the robotic gastrointestinal surgery team of Gansu Provincial Hospital completed 998 cases of robotic "3+2" mode gastrointestinal surgery, including 600 cases of gastric cancer, 100 cases of rectal cancer, 98 cases of descending colon and sigmoid colon cancer, 20 cases of transverse colon cancer, and 180 cases of right colon cancer. Through the continuous optimization and improvement of the problems encountered during the operation, combined with the operator's experience, and taking into account various aspects, we developed the robotic "3+2" mode trocar layout for gastrointestinal surgery.Results:Four principles of trocar layout were developed, namely, the principle of lens placement around the navel, the principle of symmetry in the main operation, the principle of 8-10cm distance between trocar holes, and the principle of symmetry in the auxiliary hole lens. Three trocar layout methods and principles applicable to robotic gastric surgery, and four applicable to robotic colorectal surgery were developed.Conclusion:The trocar layout method of robotic "3+2" mode gastrointestinal surgery is established based on a large number of robotic gastrointestinal surgery experiences. This method is simple and easy to learn, with strong repeatability and operability.

10.
Journal of Experimental Hematology ; (6): 1019-1025, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009958

ABSTRACT

OBJECTIVE@#To investigate the occurrence of CSF3R mutation in patients with t(8;21) acute myeloid leukemia (AML) and its correlation with some clinical parameters.@*METHODS@#The clinical and laboratory data of 167 newly diagnosed AML patients with t(8;21) translocation were analyzed retrospectively. High-throughput DNA sequencing technology combined with Sanger sequencing method was used to detect 112 gene mutations. The occurrence of CSF3R gene mutation and its influence on the remission rate after chemotherapy were analyzed.@*RESULTS@#Among 167 patients with t(8;21) AML, 15 patients (9.0%) carried CSF3R mutations, including 6 cases of membrane proximal region mutations and 9 cases of truncation mutations in the cytoplasmic tail. The most common coexisting mutations of CSF3R were KIT (40.0%), TET2 (33.3%), DNMT3A (26.7%), FLT3 (20.0%), CBL (20.0%), IDH1 (13.3%), etc. Compared with the wild type, the CSF3R mutant group had a higher mutation rate of DNA methylation-related genes(P <0.001). The median peripheral white blood cell (WBC) count of patients with CSF3R gene mutation was 5.80 (3.20-8.56)×109/L at initial diagnosis, which was significantly lower than 8.80 (5.26-19.92)×109/L of the CSF3R wild-type patients (P =0.017). There was no significant difference between the two groups in sex, median age, FAB classification, hemoglobin level, platelet count, etc. (P >0.05). The CR rate of the CSF3R gene mutation group (100%) was significantly higher than that of the wild-type group (86.8%), but the difference was not statistically significant (P >0.05). The CSF3R gene mutation group had a significantly higher CD19 positive rate and a higher -X rate than the wild group (86.7% vs 47.4%, P =0.004; 33.3% vs 13.2%, P =0.037).@*CONCLUSION@#There is a high incidence of CSF3R mutation in t (8;21) AML patients. The clinical characteristics and coexisting mutation genes of CSF3R mutation-positive patients are different from those of wild-type patients.


Subject(s)
Humans , Retrospective Studies , Prognosis , Leukemia, Myeloid, Acute/genetics , Mutation , Signal Transduction , Receptors, Colony-Stimulating Factor/genetics
11.
Article in English | WPRIM (Western Pacific) | ID: wpr-982369

ABSTRACT

Postmenopausal osteoporosis is a kind of degenerative disease, also described as "invisible killer." Estrogen is generally considered as the key hormone for women to maintain bone mineral content during their lives. Iron accumulation refers to a state of human serum ferritin that is higher than the normal value but less than 1000 μg/L. It has been found that iron accumulation and osteoporosis could occur simultaneously with the decrease in estrogen level after menopause. In recent years, many studies indicated that iron accumulation plays a vital role in postmenopausal osteoporosis, and a significant correlation has been found between iron accumulation and fragility fractures. In this review, we summarize and analyze the relevant literature including randomized controlled trials, systematic reviews, and meta-analyses between January 1996 and July 2022. We investigate the mechanism of the effect of iron accumulation on bone metabolism and discuss the relationship of iron accumulation, osteoporosis, and postmenopausal fragility fractures, as well as the main clinical treatment strategies. We conclude that it is necessary to pay attention to the phenomenon of iron accumulation in postmenopausal women with osteoporosis and explore the in-depth mechanism of abnormal bone metabolism caused by iron accumulation, in order to facilitate the discovery of effective therapeutic targets for postmenopausal osteoporosis.


Subject(s)
Humans , Female , Osteoporotic Fractures , Osteoporosis, Postmenopausal/drug therapy , Postmenopause , Osteoporosis , Bone Density , Estrogens , Iron/therapeutic use
12.
International Eye Science ; (12): 1087-1092, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-976475

ABSTRACT

AIM:To clarify the effect of miR-519d-3p on high glucose-induced human retinal microvascular endothelial cells(HRMEC)dysfunction and angiogenesis, and to elucidate the regulatory mechanism of miR-519d-3p on hypoxia inducible factor 1 subunit alpha(HIF-1α).METHODS: The normal glucose(NG)and high glucose(HG)cell models were established by inducing HRMEC with 5 and 30 mmol/L glucose, respectively. Control group: HG cell model was transfected with negative control mimics; mannitol group: the control group was added with 25 mmol/L mannitol; miR-519d-3p overexpression group: HG cell model was transfected with miR-519d-3p mimics; miR-519d-3p combined with HIF-1α overexpression group: HG cell model was co-transfected with miR-519d-3p mimics and HIF-1α overexpression vector. The expression of miR-519d-3p in each group was tested by real-time fluorescence quantitative PCR. The expression of HIF-1α protein in each group was tested by Western blotting. The binding sites between miR-519d-3p and HIF-1α were detected by luciferase reporter gene assay. The cell proliferation of each group was detected by CCK-8. The cell apoptosis of each group was tested by Hoechst 33342 staining. The protein expression of extracellular fluid inflammatory factors tumor necrosis factor-α(TNF-α), interleukin(IL)-1β and IL-6 in each group was tested by ELISA. The formation of new capillary lumen-like structures was detected by tubule formation assay.RESULTS: Compared with the NG, miR-519d-3p expression was significantly reduced in the HG cell model, while HIF-1α protein expression was significantly increased in the HG(all P&#x003C;0.01). Compared with the control group, HIF-1α protein expression was significantly reduced in the miR-519d-3p overexpression group(P&#x003C;0.01). The “CGUGAAA” sequence of miR-519d-3p could specifically bind to the “GCACUUU” sequence of HIF-1α 3'-untranslated region(3'-UTR). Compared with the control group, the miR-519d-3p overexpression group showed a significant increase in 24, 48 and 72h absorbance values, a significant decrease in cell apoptotic rate, a significant decrease in the concentrations of TNF-α, IL-1β and IL-6, and a significant decrease in the number of new capillary lumen-like structures(all P&#x003C;0.01). Compared with the miR-519d-3p overexpression group, the miR-519d-3p combined with HIF-1α overexpression group showed a significant decrease in 24, 48 and 72h absorbance values, a significant increase in cell apoptotic rate, a significant increase in the concentrations of TNF-α, IL-1β and IL-6, and a significant increase in the number of new capillary lumen-like structures(all P&#x003C;0.01). There was no difference between the control group and mannitol group in the comparison of the above indicators(all P&#x003E;0.05).CONCLUSION: miR-519d-3p expression is down-regulated while HIF-1α protein expression is up-regulated in high glucose induced HRMEC model. HIF-1α is a target gene of miR-519d-3p. The miR-519d-3p targets HIF-1α to increase cell proliferation and reduce cell apoptosis and inflammation, thereby alleviating high glucose-induced HRMEC dysfunction and inhibiting angiogenesis.

13.
Preprint in English | bioRxiv | ID: ppbiorxiv-516898

ABSTRACT

The BNT162b2 bivalent BA.4/5 COVID-19 vaccine has been authorized to mitigate COVID-19 due to current Omicron and potentially future variants. New sublineages of SARS-CoV-2 Omicron continue to emerge and have acquired additional mutations, particularly in the spike protein, that may lead to improved viral fitness and immune evasion. The present study characterized neutralization activities against new Omicron sublineages BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1 after a 4th dose (following three doses of BNT162b2) of either the original monovalent BNT162b2 or the bivalent BA.4/5 booster in individuals >55 years of age. For all participants, the 4th dose of monovalent BNT162b2 vaccine induced a 3.0x, 2.9x, 2.3x, 2.1x, 1.8x, and 1.5x geometric mean neutralizing titer fold rise (GMFR) against USA/WA1-2020 (a strain isolated in January 2020), BA.4/5, BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1, respectively; the bivalent vaccine induced 5.8x, 13.0x, 11.1x, 6.7x, 8.7x, and 4.8x GMFRs. For individuals without SARS-CoV-2 infection history, BNT162b2 monovalent induced 4.4x, 3.0x, 2.5x, 2.0x, 1.5x, and 1.3x GMFRs, respectively; the bivalent vaccine induced 9.9x, 26.4x, 22.2x, 8.4x, 12.6x, and 4.7x GMFRs. These data suggest the bivalent BA.4/5 vaccine is more immunogenic than the original BNT162b2 monovalent vaccine against circulating Omicron sublineages, including BQ.1.1 that is becoming prevalent globally.

14.
Preprint in English | bioRxiv | ID: ppbiorxiv-508818

ABSTRACT

The SARS-CoV-2 Omicron variant and its sublineages show pronounced viral escape from neutralizing antibodies elicited by vaccination or prior SARS-CoV-2 variant infection owing to over 30 amino acid alterations within the spike (S) glycoprotein. We and others have recently reported that breakthrough infection of vaccinated individuals with Omicron sublineages BA.1 and BA.2 are associated with distinct patterns of cross-neutralizing activity against SARS-CoV-2 variants of concern (VOCs). BA.2 breakthrough infection mediated overall stronger cross-neutralization of BA.2 and its descendants (BA.2.12.1, BA.4, and BA.5) compared to BA.1 breakthrough infection. Here we characterized the effect of Omicron BA.4/BA.5 S glycoprotein exposure on the magnitude and breadth of the neutralizing antibody response upon breakthrough infection in vaccinated individuals and in mice upon booster vaccination. We show that immune sera from triple mRNA-vaccinated individuals with subsequent Omicron BA.4/BA.5 breakthrough infection display broad and robust neutralizing activity against Omicron BA.1, BA.2, BA.2.12.1, and BA.4/BA.5. Administration of a prototypic BA.4/BA.5-adapted mRNA booster vaccine to mice following SARS-CoV-2 wild-type strain-based primary immunization is associated with similarly broad neutralizing activity. Immunization of naive mice with a bivalent mRNA vaccine (wild-type + Omicron BA.4/BA.5) induces strong and broad neutralizing activity against Omicron VOCs and previous variants. These findings suggest that when administered as boosters, mono- and bivalent Omicron BA.4/BA.5-adapted vaccines may enhance neutralization breadth, and in a bivalent format may also have the potential to confer protection to individuals with no pre-existing immunity against SARS-CoV-2.

15.
Nurse Lead ; 20(6): 594-600, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35464634

ABSTRACT

The COVID-19 pandemic created stressful working conditions for nurses and challenges for leaders. A survey was conducted among 399 acute and ambulatory care nurses measuring availability of calming and safety resources, perceptions of support from work, and intent to stay. Most nurses reported intent to stay with their employer, despite inadequate safety and calming resources. High levels of support from work were significantly influenced nurses' intent to stay. Leadership actions at the study site to provide support are described, providing context for results. Nurse leaders can positively influence intent to stay through consistent implementation of supportive measures.

16.
J Cardiovasc Pharmacol ; 80(2): 251-260, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35416804

ABSTRACT

ABSTRACT: Sodium ferulate (SF) is the sodium salt of ferulic acid, which is one of the effective components of Angelica sinensis and Lignsticum chuanxiong , and plays an important role in protecting the cardiovascular system. In this study, myocardial hypertrophy was induced by angiotensin II 0.1 µmol/L in neonatal Sprague-Dawley rat ventricular myocytes. Nine groups were designed, that is, normal, normal administration, model, L-arginine (L-arg 1000 µmol/L), SF (50, 100, 200 µmol/L) group, and N G -nitro-L-arg-methyl ester 1500 µmol/L combined with SF 200 µmol/L or L-arg 1000 µmol/L group, respectively. Cardiomyocyte hypertrophy was confirmed by observing histological changes and measurements of cell diameter, protein content and atrial natriuretic factor, and ß-myosin heavy chain levels of the cells. Notably, SF could inhibit significantly myocardial hypertrophy of neonatal rat cardiomyocytes in a concentration-dependent manner without producing cytotoxicity, and the levels of nitric oxide, NO synthase (NOS), endothelial NOS, and cyclic guanosine monophosphate were increased, but the level of cyclic adenosine monophosphate was decreased in cardiomyocytes. Simultaneously, levels of protein kinase C beta, Raf-1, and extracellular regulated protein kinase 1/2 (ERK1/2) were downregulated, whereas levels of mitogen-activated protein kinase phosphatase-1 were significantly upregulated. All the beneficial effects of SF were blunted by N G -nitro-L-arg-methyl ester. Overall, these findings reveal that SF can inhibit angiotensin II-induced myocardial hypertrophy of neonatal rat cardiomyocytes, which is closely related to activation of endothelial NOS/NO/cyclic guanosine monophosphate, and inhibition of protein kinase C and mitogen-activated protein kinase signaling pathways.


Subject(s)
Angiotensin II , Nitric Oxide Synthase Type III , Angiotensin II/metabolism , Animals , Cardiomegaly/chemically induced , Cardiomegaly/drug therapy , Cardiomegaly/prevention & control , Coumaric Acids , Cyclic GMP/metabolism , Esters , Guanosine Monophosphate/metabolism , Guanosine Monophosphate/pharmacology , Myocytes, Cardiac , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction
17.
Environ Pollut ; 306: 119363, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35489535

ABSTRACT

Sulfidized nanoscale zero-valent iron (S-nZVI) is a promising material for in situ soil remediation. However, its transformation (i.e., aging) and effects on the microbial community in soil ecosystems are largely unknown. In this study, S-nZVI having low (S-nZVI (L)) and high sulfur-doping (S-nZVI (H)) were incubated in soil microcosms and bare nZVI was used as a control. Their aged products were characterized using microspectroscopic analyses and the changes in the corresponding soil microbial community were determined using high-throughput sequencing analyses. The results indicate that severe corrosion of both bare and S-nZVI occurred over 56 days of aging with significant morphological and mineral changes. Magnetite, lepidocrocite, and goethite were detected as the main aged products. In addition, sulfate ions, pyrite, and iron polysulfide were formed in the aged products of S-nZVI. Cr(VI) removal test results indicated that S-nZVI(L) achieved the best results after aging, likely because of the optimal FeS arrangement on its nanoparticle surfaces. The presence of nZVI and S-nZVI increased the abundance of some magnetotactic microorganisms and altered bacterial and fungal community structures and compositions. Moreover, the addition of S-nZVI enriched some bacterial and fungal genera related to sulfur cycling because of the presence of sulfide-bearing material. The findings reveal the transformation of S-nZVI during aging and its effects on microbial communities in soil ecosystems, thereby helping to the evaluation of S-nZVI application in soil remediation.


Subject(s)
Environmental Restoration and Remediation , Microbiota , Iron/chemistry , Soil/chemistry , Sulfur
18.
Preprint in English | bioRxiv | ID: ppbiorxiv-485633

ABSTRACT

The newly emerged Omicron SARS-CoV-2 has 3 distinct sublineages: BA.1, BA.2, and BA.3. BA.1 accounts for the initial surge and is being replaced by BA.2, whereas BA.3 is at a low prevalence at this time. Here we report the neutralization of BNT162b2-vaccinated sera (collected at 1 month after dose 3) against the three Omicron sublineages. To facilitate the neutralization testing, we engineered the complete BA.1, BA.2, or BA.3 spike into an mNeonGreen USA-WA1/2020 SRAS-CoV-2. All BNT162b2-vaccinated sera neutralized USA-WA1/2020, BA.1-, BA.2-, and BA.3-spike SARS-CoV-2s with titers of >20; the neutralization geometric mean titers (GMTs) against the four viruses were 1211, 336, 300, and 190, respectively. Thus, the BA.1-, BA.2-, and BA.3-spike SARS-CoV-2s were 3.6-, 4.0-, and 6.4-fold less efficiently neutralized than the USA-WA1/2020, respectively. Our data have implications in vaccine strategy and understanding the biology of Omicron sublineages.

19.
Preprint in English | bioRxiv | ID: ppbiorxiv-476344

ABSTRACT

We report the antibody neutralization against Omicron SARS-CoV-2 after 2 and 3 doses of BNT162b2 mRNA vaccine. Vaccinated individuals were serially tested for their neutralization against wild-type SARS-CoV-2 (strain USA-WA1/2020) and an engineered USA-WA1/2020 bearing the Omicron spike glycoprotein. Plaque reduction neutralization results showed that at 2 or 4 weeks post-dose-2, the neutralization geometric mean titers (GMTs) were 511 and 20 against the wild-type and Omicron-spike viruses, respectively, suggesting that two doses of BNT162b2 were not sufficient to elicit robust neutralization against Omicron; at 1 month post-dose-3, the neutralization GMTs increased to 1342 and 336, respectively, indicating that three doses of vaccine increased the magnitude and breadth of neutralization against Omicron; at 4 months post-dose-3, the neutralization GMTs decreased to 820 and 171, respectively, suggesting similar neutralization decay kinetics for both variants. The data support a three-dose vaccine strategy and provide the first glimpse of the neutralization durability against Omicron.

20.
Environ Sci Pollut Res Int ; 29(14): 20711-20720, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34741738

ABSTRACT

Nanoparticles and organic pollutants are two major contaminants found in aquatic environments. Algae are regarded as the model organism for the risk assessment of pollutants in water. In our previous study, we investigated the toxic effects of nonylphenol (NP), a typical organic water pollutant, on algae; however, it remains unclear how algae respond to the coexistence of NP and nanoparticles. In this study, a concentration gradient of nanoscale zero-valent iron (nZVI; 10, 50, 100, and 200 mg/L) was added to NP-exposed Dictyosphaerium sp. to investigate both the toxic effects of this combination and the potential for NP removal. nZVI had a dose-dependent effect on NP-exposed algae, with high nZVI concentrations significantly decreasing algal biomass and pigment content, as well as severely damaging algal cellular ultrastructure. In addition, genes involved in antioxidant response, photosynthesis, and ribosome synthesis were significantly altered when NP-exposed algae were incubated with nZVI. In contrast to high nZVI concentrations, adding a small concentration of nZVI led to reduced toxicity in NP-exposed algae, while significantly enhancing the NP removal rate. This study improves our understanding of algal responses to various pollutants and suggests that nZVI may assist in the remediation of NP in aquatic ecosystems.


Subject(s)
Iron , Water Pollutants, Chemical , Ecosystem , Iron/chemistry , Phenols , Transcriptome , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...