Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 259: 121850, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38851109

ABSTRACT

Iron (Fe0, Fe (II), and Fe (III)) has been previously documented to upregulate the expression of key genes, enhancing the production of volatile fatty acids (VFAs) to achieve waste/wastewater resource recovery. However, the precise mechanism by why iron influences gene expression remains unclear. This study applied iron-assisted fermentation systems to explore the behind enhancing mechanism by constructing regulon networks among genes, microbes, and transcription factors. In iron-conditioned systems, a significant enhancement in VFAs production and upregulation of genes expression (1.19-3.92 folds) related to organic conversion and the electron transfer chain was observed. Besides, gene co-expression network and Procrustes analysis identified ten hub transcription factors (e.g., arsR, crp, iscR, perR) and their major contributors (genus) (e.g., Paludibacter, Acinetobacter, Tolumonas). Further analysis suggested that most of hub transcription factors were implicated in iron homeostasis regulation, which speculated that the induced iron homeostasis transcription factors probably effectively regulated the expression of genes encoding enzymes involving in VFAs production and electron transfer of functional microbes, in the case of Paludibacter, Acinetobacter, and Tolumonas while regulating the iron homeostasis, resulting in the efficient production of VFAs in iron-conditioned systems. This study might contribute to an enhanced understanding of the underlying genetic mechanisms by why iron influences gene expression regulation of microbes, which also provides a genetic theoretical basis for improving system VFAs production and resource recovery.


Subject(s)
Fatty Acids, Volatile , Fermentation , Iron , Transcription Factors , Iron/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Fatty Acids, Volatile/metabolism , Homeostasis , Gene Expression Regulation, Bacterial , Bacteria/metabolism , Bacteria/genetics
2.
Water Res ; 209: 117876, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34864623

ABSTRACT

Thermal hydrolysis pretreatment (THP) can effectively remove the antibiotic resistance genes (ARGs) from sewage sludge, but the rebounding effects in the subsequent anaerobic fermentation are often observed. The purpose of this study was to elucidate the distribution and fate of intracellular and extracellular ARGs (iARGs and eARGs) in the sludge acidogenic fermentation process coupled with THP. Our results revealed that THP significantly reduced the absolute abundance of total ARGs in raw sludge but increased eARGs by 0.3-1.4 log units under practical conditions (140 °C for 30 min). There is no significant difference in the removal of total ARGs between the two acidogenic fermenters receiving raw and hydrolyzed sludge, with iARGs prevailing in the produced biosolids. The succession of bacterial community and the co-occurrence relationships among ARG type, mobile genetic elements and bacterial taxa were observed, suggesting a phylogenetic basis for the iARGs patterns in fermented sludge. However, eARGs were susceptible to biodegradation with a half-life of 2.34 h and they contributed limitedly to the ARGs propagation through transformation. These findings suggest an emphasis on the mitigation of iARGs during the acidogenic fermentation of sludge, which would be achieved by lowering the richness and physicochemical destruction of potential hosts.

SELECTION OF CITATIONS
SEARCH DETAIL
...