Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Explore (NY) ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38458955

ABSTRACT

OBJECTIVE: To investigate the effectiveness and safety of Jiejing Runmu decoction in relieving the clinical manifestations of dry eye disease (DED). DESIGN AND INTERVENTIONS: This single-arm prospective intervention study was conducted at the Peking University Third Hospital and People's Hospital of Yongqing. Of the 211 patients recruited, 200 completing the follow-up were included in the analysis. Patients received Jiejing Runmu decoction once a day for 4 weeks continuously, without any change in eye care habits. Individuals were evaluated at four time points: pretreatment (baseline), 2 weeks, 1 month, and 3 months (2 months after completion of treatment), using the Ocular Surface Disease Index (OSDI), tear film breakup time (TBUT), corneal fluorescein staining, Schirmer test I and meibomian gland assessments. Adverse effects were evaluated at each follow-up visit and systematic examinations were performed during the first and last visits. RESULTS: OSDI, TBUT, corneal fluorescein staining, Schirmer test I, meibomian gland expressibility, and quality of secretions improved at 2 weeks, 1 month and 3 months compared to baseline (P < 0.0001). No significant differences were found between the sexes. Patients above 45 years showed worse subjective symptoms and objective signs, and greater improvements in corneal fluorescein staining, meibomian gland expressibility, and quality of secretions were observed in this group. No obvious adverse effects were detected during any follow-up visit. CONCLUSION: Jiejing Runmu decoction significantly improved both the subjective symptoms and objective signs of DED, with favorable tolerance.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-492220

ABSTRACT

As SARS-CoV-2 variants of concerns (VOCs) continue to emerge, cross-neutralizing antibody responses become key towards next-generation design of a more universal COVID-19 vaccine. By analyzing published data from the literature, we report here that the combination of germline genes IGHV2-5/IGLV2-14 represents a public antibody response to the receptor-binding domain (RBD) that potently cross-neutralizes all VOCs to date, including Omicron and its sub-lineages. Detailed molecular analysis shows that the complementarity-determining region H3 sequences of IGHV2-5/IGLV2-14-encoded RBD antibodies have a preferred length of 11 amino acids and a conserved HxIxxI motif. In addition, these antibodies have a strong allelic preference due to an allelic polymorphism at amino-acid residue 54 of IGHV2-5, which locates at the paratope. These findings have important implications for understanding cross-neutralizing antibody responses to SARS-CoV-2 and its heterogenicity at the population level as well as the development of a universal COVID-19 vaccine.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-431722

ABSTRACT

The increasing numbers of infected cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses serious threats to public health and the global economy. Most SARS-CoV-2 neutralizing antibodies target the receptor binding domain (RBD) and some the N-terminal domain (NTD) of the spike protein, which is the major antigen of SARS-CoV-2. While the antibody response to RBD has been extensively characterized, the antigenicity and immunogenicity of the NTD protein are less well studied. Using 227 plasma samples from COVID-19 patients, we showed that SARS-CoV-2 NTD-specific antibodies could be induced during infection. As compared to the serological response to SARS-CoV-2 RBD, the SARS-CoV-2 NTD response is less cross-reactive with SARS-CoV. Furthermore, neutralizing antibodies are rarely elicited in a mice model when NTD is used as an immunogen. We subsequently demonstrate that NTD has an altered antigenicity when expressed alone. Overall, our results suggest that while NTD offers an alternative strategy for serology testing, it may not be suitable as an immunogen for vaccine development.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-339465

ABSTRACT

Antigenic imprinting, which describes the bias of antibody response due to previous immune history, can influence vaccine effectiveness and has been reported in different viruses. Give that COVID-19 vaccine development is currently a major focus of the world, there is a lack of understanding of how background immunity influence antibody response to SARS-CoV-2. This study provides evidence for antigenic imprinting in Sarbecovirus, which is the subgenus that SARS-CoV-2 belongs to. Specifically, we sequentially immunized mice with two antigenically distinct Sarbecovirus strains, namely SARS-CoV and SARS-CoV-2. We found that the neutralizing antibodies triggered by the sequentially immunization are dominantly against the one that is used for priming. Given that the impact of the background immunity on COVID-19 is still unclear, our results will provide important insights into the pathogenesis of this disease as well as COVID-19 vaccination strategy.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20153114

ABSTRACT

COVID-19 patients show varying severity of the disease ranging from asymptomatic to requiring intensive care. Although a number of SARS-CoV-2 specific monoclonal antibodies have been identified, we still lack an understanding of the overall landscape of B-cell receptor (BCR) repertoires in COVID-19 patients. Here, we used high-throughput sequencing of bulk and plasma B-cells collected over multiple time points during infection to characterize signatures of B-cell response to SARS-CoV-2 in 19 patients. Using principled statistical approaches, we determined differential features of BCRs associated with different disease severity. We identified 38 significantly expanded clonal lineages shared among patients as candidates for specific responses to SARS-CoV-2. Using single-cell sequencing, we verified reactivity of BCRs shared among individuals to SARS-CoV-2 epitopes. Moreover, we identified natural emergence of a BCR with cross-reactivity to SARS-CoV-1 and SARS-CoV-2 in a number of patients. Our results provide important insights for development of rational therapies and vaccines against COVID-19.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-993097

ABSTRACT

The World Health Organization has recently declared the ongoing outbreak of COVID-19, which is caused by a novel coronavirus SARS-CoV-2, as pandemic. There is currently a lack of knowledge in the antibody response elicited from SARS-CoV-2 infection. One major immunological question is concerning the antigenic differences between SARS-CoV-2 and SARS-CoV. We address this question by using plasma from patients infected by SARS-CoV-2 or SARS-CoV, and plasma obtained from infected or immunized mice. Our results show that while cross-reactivity in antibody binding to the spike protein is common, cross-neutralization of the live viruses is rare, indicating the presence of non-neutralizing antibody response to conserved epitopes in the spike. Whether these non-neutralizing antibody responses will lead to antibody-dependent disease enhancement needs to be addressed in the future. Overall, this study not only addresses a fundamental question regarding the antigenicity differences between SARS-CoV-2 and SARS-CoV, but also has important implications in vaccine development.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-991570

ABSTRACT

The outbreak of COVID-19, which is caused by SARS-CoV-2 virus, continues to spread globally, but there is currently very little understanding of the epitopes on the virus. In this study, we have determined the crystal structure of the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein in complex with CR3022, a neutralizing antibody previously isolated from a convalescent SARS patient. CR3022 targets a highly conserved epitope that enables cross-reactive binding between SARS-CoV-2 and SARS-CoV. Structural modeling further demonstrates that the binding site can only be accessed when at least two RBDs on the trimeric S protein are in the "up" conformation. Overall, this study provides structural and molecular insight into the antigenicity of SARS-CoV-2. ONE SENTENCE SUMMARYStructural study of a cross-reactive SARS antibody reveals a conserved epitope on the SARS-CoV-2 receptor-binding domain.

SELECTION OF CITATIONS
SEARCH DETAIL
...