Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
1.
Eur J Pharmacol ; 975: 176636, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38729417

ABSTRACT

Endothelial cells express multiple receptors mediating estrogen responses; including the G protein-coupled estrogen receptor (GPER). Past studies on nitric oxide (NO) production elicited by estrogens raised the question whether 17-ß-estradiol (E2) and natural phytoestrogens activate equivalent mechanisms. We hypothesized that E2 and phytoestrogens elicit NO production via coupling to distinct intracellular pathways signalling. To this aim, perfusion of E2 and phytoestrogens to the precontracted rat mesentery bed examined vasorelaxation, while fluorescence microscopy on primary endothelial cells cultures quantified single cell NO production determined following 4-amino-5-methylamino-2',7'-difluoroescein diacetate (DAF) incubation. Daidzein (DAI) and genistein (GEN) induced rapid vasodilatation associated to NO production. Multiple estrogen receptor activity was inferred based on the reduction of DAF-NO signals; G-36 (GPER antagonist) reduced 75 % of all estrogen responses, while fulvestrant (selective nuclear receptor antagonist) reduced significantly more the phytoestrogens responses than E2. The joint application of both antagonists abolished the E2 response but not the phytoestrogen-induced DAF-NO signals. Wortmannin or LY-294002 (PI3K inhibitors), reduced by 90% the E2-evoked signal while altering significantly less the DAI-induced response. In contrast, H-89 (PKA inhibitor), elicited a 23% reduction of the E2-induced signal while blocking 80% of the DAI-induced response. Desmethylxestospongin-B (IP3 receptor antagonist), decreased to equal extent the E2 or the DAI-induced signal. Epidermal growth factor (EGF) induced NO production, cell treatment with AG-1478, an EGF receptor kinase inhibitor reduced 90% DAI-induced response while only 53% the E2-induced signals; highlighting GPER induced EGF receptor trans-modulation. Receptor functional selectivity may explain distinct signalling pathways mediated by E2 and phytoestrogens.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , ErbB Receptors , Estradiol , Nitric Oxide , Phosphatidylinositol 3-Kinases , Phytoestrogens , Signal Transduction , Vasodilation , Animals , Phytoestrogens/pharmacology , Estradiol/pharmacology , Nitric Oxide/metabolism , Rats , Signal Transduction/drug effects , Vasodilation/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , ErbB Receptors/metabolism , Male , Isoflavones/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Genistein/pharmacology , Receptors, Estrogen/metabolism , Rats, Wistar
2.
Front Pharmacol ; 13: 1031223, 2022.
Article in English | MEDLINE | ID: mdl-36744214

ABSTRACT

The vesicular nucleotide transporter (VNUT) is critical for sympathetic co-transmission and purinergic transmission maintenance. To examine this proposal, we assessed whether the bisphosphonate clodronate, claimed as a potent in vitro VNUT blocker, modified spontaneous and/or the electrically evoked overflow of ATP/metabolites and NA from mesentery sympathetic perivascular nerve terminals. Additionally, in primary endothelial cell cultures derived from this tissue, we also evaluated whether clodronate interfered with ATP/metabolite cell outflow and metabolism of N6-etheno adenosine 5'-triphosphate (eATP), N6-etheno adenosine (eADO), and adenosine deaminase enzyme activity. Rat mesenteries were perfused in the absence or presence of .01-1,000 nM clodronate, 1-1,000 nM Evans blue (EB), and 1-10 µM DIDS; tissue perfusates were collected to determine ATP/metabolites and NA before, during, and after perivascular electrical nerve terminal depolarization. An amount of 1-1,000 nM clodronate did not modify the time course of ATP or NA overflow elicited by nerve terminal depolarization, and only 10 nM clodronate significantly augmented perfusate adenosine. Electrical nerve terminal stimulation increased tissue perfusion pressure that was significantly reduced only by 10 nM clodronate [90.0 ± 18.6 (n = 8) to 35.0 ± 10.4 (n = 7), p = .0277]. As controls, EB, DIDS, or reserpine treatment reduced the overflow of ATP/metabolites and NA in a concentration-dependent manner elicited by nerve terminal depolarization. Moreover, mechanical stimulation of primary endothelial cell cultures from the rat mesentery added with 10 or 100 nM clodronate increased adenosine in the cell media. eATP was metabolized by endothelial cells to the same extent with and without 1-1,000 nM clodronate, suggesting the bisphosphonate did not interfere with nucleotide ectoenzyme metabolism. In contrast, extracellular eADO remained intact, indicating that this nucleoside is neither metabolized nor transported intracellularly. Furthermore, only 10 nM clodronate inhibited (15.5%) adenosine metabolism to inosine in endothelial cells as well as in a commercial crude adenosine deaminase enzyme preparation (12.7%), and both effects proved the significance (p < .05). Altogether, present data allow inferring that clodronate inhibits adenosine deaminase activity in isolated endothelial cells as in a crude extract preparation, a finding that may account for adenosine accumulation following clodronate mesentery perfusion.

3.
J Am Heart Assoc ; 10(16): e020498, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34350775

ABSTRACT

Background The vascular pharmacodynamics of anthocyanins is only partially understood. To examine whether the anthocyanin-induced vasorelaxation is related to membrane estrogen receptor activity, the role of ERα or GPER antagonism was ascertained on anthocyanins or 17-ß estradiol-(E2) induced vasodilatations and NO production. Methods and Results The rat arterial mesenteric bed was perfused with either anthocyanins or corresponding 3-O-glycosides, or E2, to examine rapid concentration-dependent vasorelaxations. The luminally accessible fraction of NO in mesenteric perfusates before and after anthocyanins or E2 administration was quantified. Likewise, NO-DAF signal detected NO production in primary endothelial cells cultures incubated with anthocyanins or E2 in the absence and presence of ERα (ICI 182,780) or GPER (G-36) selective antagonists. Anthocyanins or corresponding glycosides elicited, within minutes, vasodilation with nanomolar potencies; half maximal anthocyanin response reached 50% to 60% efficacy, in contrast to acetylcholine. The vasorelaxation is of rapid onset and exclusively endothelium-dependent; NOS inhibition annulled the vasorelaxation. The delphinidin vascular response was not modified by 100 nmol/L atropine but significantly attenuated by joint application of ICI plus G-36 (52±4.6 versus 8.5±1.5%), revealing the role of membrane estrogen receptors. Moreover, the anthocyanin or E2-induced NO production was antagonized up to 70% by these antagonists. NO-DAF signal elicited by anthocyanins was annulled by NOS inhibition or by ICI plus G-36 addition. Conclusions The biomedical effect of anthocyanins or 3-O-glycosylates derivatives contained in naturally purple-colored foods or berries is due to increased NO production, and not to the phytochemical's antioxidant potential, highlighting the nutraceutical role of natural products in cardiovascular diseases.


Subject(s)
Anthocyanins/pharmacology , Estrogen Receptor alpha/agonists , Mesenteric Artery, Superior/drug effects , Nitric Oxide/metabolism , Phytoestrogens/pharmacology , Receptors, G-Protein-Coupled/agonists , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Estradiol/pharmacology , Estrogen Receptor alpha/metabolism , Male , Mesenteric Artery, Superior/metabolism , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
4.
Int J Mol Sci ; 22(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34298909

ABSTRACT

To ascertain the role of Zn(II) as an allosteric modulator on P2X4R, QM/MM molecular dynamic simulations were performed on the WT and two P2X4R mutants suggested by previous electrophysiological data to affect Zn(II) binding. The Gibbs free energy for the reduction of the putative P2X4R Zn(II) binding site by glutathione was estimated at -22 kcal/mol. Simulations of the WT P2X4R head domain revealed a flexible coordination sphere dominated by an octahedral geometry encompassing C126, N127, C132, C149, C159 and a water molecule. The C132A mutation disrupted the metal binding site, leading to a coordination sphere with a majority of water ligands, and a displacement of the metal ion towards the solvent. The C132A/C159A mutant exhibited a tendency towards WT-like stability by incorporating the R148 backbone to the coordination sphere. Thus, the computational findings agree with previous experimental data showing Zn(II) modulation for the WT and C132A/C159A variants, but not for the C132A mutant. The results provide molecular insights into the nature of the Zn(II) modulation in P2X4R, and the effect of the C132A and C132A/C159A mutations, accounting for an elusive modulation mechanism possibly occurring in other extracellular or membrane protein.


Subject(s)
Cysteine/metabolism , Protein Domains/physiology , Ribosomal Protein L10/metabolism , Zinc/metabolism , Ligands , Membrane Proteins/metabolism , Metals/metabolism , Molecular Dynamics Simulation , Protein Binding/physiology , Receptors, Purinergic P2X4 , Water/metabolism
5.
Int J Mol Sci ; 21(18)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971737

ABSTRACT

P2 × 4R is allosterically modulated by Zn(II), and despite the efforts to understand the mechanism, there is not a consensus proposal; C132 is a critical amino acid for the Zn(II) modulation, and this residue is located in the receptor head domain, forming disulfide SS3. To ascertain the role of the SS2/SS3 microenvironment on the rP2 × 4R Zn(II)-induced allosteric modulation, we investigated the contribution of each individual SS2/SS3 cysteine plus carboxylic acid residues E118, E160, and D170, located in the immediate vicinity of the SS2/SS3 disulfide bonds. To this aim, we combined electrophysiological recordings with protein chemical alkylation using thiol reagents such as N-ethylmaleimide or iodoacetamide, and a mutation of key amino acid residues together with P2 × 4 receptor bioinformatics. P2 × 4R alkylation in the presence of the metal obliterated the allosteric modulation, a finding supported by the site-directed mutagenesis of C132 and C149 by a corresponding alanine. In addition, while E118Q was sensitive to Zn(II) modulation, the wild type receptor, mutants E160Q and D170N, were not, suggesting that these acid residues participate in the modulatory mechanism. Poisson-Boltzmann analysis indicated that the E160Q and D170N mutants showed a shift towards more positive electrostatic potential in the SS2/SS3 microenvironment. Present results highlight the role of C132 and C149 as putative Zn(II) ligands; in addition, we infer that acid residues E160 and D170 play a role attracting Zn(II) to the head receptor domain.


Subject(s)
Receptors, Purinergic P2X4/metabolism , Zinc/metabolism , Allosteric Regulation/physiology , Amino Acid Substitution , Animals , Humans , Mutation, Missense , Protein Domains , Receptors, Purinergic P2X4/genetics , Xenopus laevis
6.
Front Pharmacol ; 9: 546, 2018.
Article in English | MEDLINE | ID: mdl-29896104

ABSTRACT

Since the mechanism of human diabetic peripheral neuropathy and vascular disease in type 1 diabetes mellitus remains unknown, we assessed whether sympathetic transmitter overflow is altered by this disease and associated to vascular dysfunction. Diabetes was induced by streptozotocin (STZ)-treatment and compared to vehicle-treated rats. Aliquots of the ex vivo perfused rat arterial mesenteric preparation, denuded of the endothelial layer, were collected to quantify analytically sympathetic nerve co-transmitters overflow secreted by the isolated mesenteries of both groups of rats. Noradrenaline (NA), neuropeptide tyrosine (NPY), and ATP/metabolites were detected before, during, and after electrical field stimulation (EFS, 20 Hz) of the nerve terminals surrounding the mesenteric artery. NA overflow was comparable in both groups; however, basal or EFS-secreted ir-NPY was 26% reduced (p < 0.05) in diabetics. Basal and EFS-evoked ATP and adenosine (ADO) overflow to the arterial mesentery perfusate increased twofold and was longer lasting in diabetics; purine tissue content was 37.8% increased (p < 0.05) in the mesenteries from STZ-treated group of rats. Perfusion of the arterial mesentery vascular territory with 100 µM ATP, 100 nM 2-MeSADP, or 1 µM UTP elicited vasodilator responses of the same magnitude in controls or diabetics, but the increase in luminally accessible NO was 60-70% lower in diabetics (p < 0.05). Moreover, the concentration-response curve elicited by two NO donors was displaced downwards (p < 0.01) in diabetic rats. Parallel studies using primary cultures of endothelial cells from the arterial mesentery vasculature revealed that mechanical stimulation induced a rise in extracellular nucleotides, which in the cells from diabetic rats was larger and longer-lasting when comparing the extracellular release of ATP and ADO values to those of vehicle-treated controls. A 5 min challenge with purinergic agonists elicited a cell media NO rise, which was reduced in the endothelial cells from diabetic rats. Present findings provide neurochemical support for the diabetes-induced neuropathy and show that mesenteric endothelial cells alterations in response to mechanical stimulation are compatible with the endothelial dysfunction related to vascular disease progress.

7.
Purinergic Signal ; 14(2): 121-139, 2018 06.
Article in English | MEDLINE | ID: mdl-29349673

ABSTRACT

Endothelial cells participate in extracellular ATP release elicited by mechanosensors. To characterize the dynamic interactions between mechanical and chemical factors that modulate ATP secretion by the endothelium, we assessed and compared the mechanisms participating in the spontaneous (basal) and mechanically stimulated secretion using primary cultures of rat mesentery endothelial cells. ATP/metabolites were determined in the cell media prior to (basal) and after cell media displacement or a picospritzer buffer puff used as mechanical stimuli. Mechanical stimulation increased extracellular ATP that peaked within 1 min, and decayed to basal values in 10 min. Interruption of the vesicular transport route consistently blocked the spontaneous ATP secretion. Cells maintained in media lacking external Ca2+ elicited a spontaneous rise of extracellular ATP and adenosine, but failed to elicit a further extracellular ATP secretion following mechanical stimulation. 2-APB, a TRPV agonist, increased the spontaneous ATP secretion, but reduced the mechanical stimulation-induced nucleotide release. Pannexin1 or connexin blockers and gadolinium, a Piezo1 blocker, reduced the mechanically induced ATP release without altering spontaneous nucleotide levels. Moreover, thrombin or related agonists increased extracellular ATP secretion elicited by mechanical stimulation, without modifying spontaneous release. In sum, present results allow inferring that the spontaneous, extracellular nucleotide secretion is essentially mediated by ATP containing vesicles, while the mechanically induced secretion occurs essentially by connexin or pannexin1 hemichannel ATP transport, a finding fully supported by results from Panx1-/- rodents. Only the latter component is modulated by thrombin and related receptor agonists, highlighting a novel endothelium-smooth muscle signaling role of this anticoagulant.


Subject(s)
Adenosine Triphosphate/metabolism , Endothelial Cells/metabolism , Mechanotransduction, Cellular/physiology , TRPV Cation Channels/metabolism , Thrombin/metabolism , Animals , Cells, Cultured , Male , Mesentery/cytology , Mesentery/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Rats , Rats, Sprague-Dawley
8.
Auton Neurosci ; 185: 8-28, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24956963

ABSTRACT

The vas deferens is a simple bioassay widely used to study the physiology of sympathetic neurotransmission and the pharmacodynamics of adrenergic drugs. The role of ATP as a sympathetic co-transmitter has gained increasing attention and furthered our understanding of its role in sympathetic reflexes. In addition, new information has emerged on the mechanisms underlying the storage and release of ATP. Both noradrenaline and ATP concur to elicit the tissue smooth muscle contractions following sympathetic reflexes or electrical field stimulation of the sympathetic nerve terminals. ATP and adenosine (its metabolic byproduct) are powerful presynaptic regulators of co-transmitter actions. In addition, neuropeptide Y, the third member of the sympathetic triad, is an endogenous modulator. The peptide plus ATP and/or adenosine play a significant role as sympathetic modulators of transmitter's release. This review focuses on the physiological principles that govern sympathetic co-transmitter activity, with special interest in defining the motor role of ATP. In addition, we intended to review the recent structural biology findings related to the topology of the P2X1R based on the crystallized P2X4 receptor from Danio rerio, or the crystallized adenosine A2A receptor as a member of the G protein coupled family of receptors as prototype neuro modulators. This review also covers structural elements of ectonucleotidases, since some members are found in the vas deferens neuro-effector junction. The allosteric principles that apply to purinoceptors are also reviewed highlighting concepts derived from receptor theory at the light of the current available structural elements. Finally, we discuss clinical applications of these concepts.


Subject(s)
Neuroeffector Junction/physiology , Vas Deferens/physiology , Animals , Epithelium/physiology , Humans , Male , Neuroeffector Junction/anatomy & histology , Receptors, Purinergic/metabolism , Vas Deferens/anatomy & histology
9.
PLoS One ; 8(2): e56962, 2013.
Article in English | MEDLINE | ID: mdl-23451120

ABSTRACT

Translation initiation from the human immunodeficiency virus type-1 (HIV-1) mRNA can occur through a cap or an IRES dependent mechanism. Cap-dependent translation initiation of the HIV-1 mRNA can be inhibited by the instability element (INS)-1, a cis-acting regulatory element present within the gag open reading frame (ORF). In this study we evaluated the impact of the INS-1 on HIV-1 IRES-mediated translation initiation. Using heterologous bicistronic mRNAs, we show that the INS-1 negatively impact on HIV-1 IRES-driven translation in in vitro and in cell-based experiments. Additionally, our results show that the inhibitory effect of the INS-1 is not general to all IRESes since it does not hinder translation driven by the HCV IRES. The inhibition by the INS-1 was partially rescued in cells by the overexpression of the viral Rev protein or hnRNPA1.


Subject(s)
Genes, gag/genetics , HIV-1/genetics , Open Reading Frames/genetics , HeLa Cells , Humans , Immunoblotting , Regulatory Sequences, Nucleic Acid/genetics , Reverse Transcriptase Polymerase Chain Reaction , rev Gene Products, Human Immunodeficiency Virus/genetics
10.
Neuroscience ; 203: 216-29, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22178987

ABSTRACT

The rat vas deferens has scattered sensory afferens plus a dense network of sympathetic motor efferens; these fibers are not known to interact functionally. We ascertained whether sensory fibers modulate the release of sympathetic transmitters through the release of calcitonin gene-related peptide (CGRP) and reciprocally assessed whether sympathetic transmitters modulate the overflow of ir-CGRP from sensory fibers. The tissue overflow of electrically evoked sympathetic co-transmitters (ATP/metabolites, noradrenaline (NA), and immunoreactive neuropeptide tyrosine (ir-NPY)) and the motor responses elicited were quantified following either exogenous CGRP or capsaicin application to elicit peptide release. Conversely, the outflow of ir-CGRP was examined in the presence of sympathetic transmitters. Exogenous CGRP reduced in a concentration-dependent manner the electrically evoked outflow of ATP/metabolites, NA, and ir-NPY with EC(50) values of 1.3, 0.18, and 1.9 nM, respectively. CGRP also reduced the basal NA overflow. The CGRP-evoked modulation was blocked by CGRP8-37 or H-89. Release of endogenous CGRP by capsaicin significantly reduced the basal overflow of NA, ir-NPY, and the electrically evoked sympathetic transmitter release. ADP, 2-methylthioadenosine-5'-O-diphosphate (2-MeSADP), or UTP decreased the electrically evoked ir-CGRP overflow, whereas clonidine, α,ß-methyleneadenosine 5'-triphosphate (α,ß-mATP), or adenosine (ADO) were inactive. CGRP acting postjunctionally also reduced the motor responses elicited by exogenous NA, ATP, or electrically evoked contractions. We conclude that CGRP exerts a presynaptic modulator role on sympathetic nerve endings and reciprocally ATP or related nucleotides influence the release of ir-CGRP from sensory fibers, highlighting a dynamic sympatho-sensory control between sensory fibers and sympathetic nerve ending. Postjunctional CGRP receptors further contribute to reduce the tissue sympathetic motor tone implying a pre and postjunctional role of CGRP as a sympathetic tone modulator.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Neuroeffector Junction/physiology , Nucleotides/metabolism , Sensory Receptor Cells/physiology , Sympathetic Nervous System/physiology , Adenosine Triphosphate/metabolism , Animals , Male , Rats , Rats, Sprague-Dawley
11.
Int J Alzheimers Dis ; 2011: 706576, 2011.
Article in English | MEDLINE | ID: mdl-22114745

ABSTRACT

Although the physiological function of the cellular prion protein (PrP(C)) remains unknown, several evidences support the notion of its role in copper homeostasis. PrP(C) binds Cu(2+) through a domain composed by four to five repeats of eight amino acids. Previously, we have shown that the perfusion of this domain prevents and reverses the inhibition by Cu(2+) of the adenosine triphosphate (ATP)-evoked currents in the P2X(4) receptor subtype, highlighting a modulatory role for PrP(C) in synaptic transmission through regulation of Cu(2+) levels. Here, we study the effect of full-length PrP(C) in Cu(2+) inhibition of P2X(4) receptor when both are coexpressed. PrP(C) expression does not significantly change the ATP concentration-response curve in oocytes expressing P2X(4) receptors. However, the presence of PrP(C) reduces the inhibition by Cu(2+) of the ATP-elicited currents in these oocytes, confirming our previous observations with the Cu(2+) binding domain. Thus, our observations suggest a role for PrP(C) in modulating synaptic activity through binding of extracellular Cu(2+).

12.
Mediators Inflamm ; 2011: 152625, 2011.
Article in English | MEDLINE | ID: mdl-21941410

ABSTRACT

The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance.


Subject(s)
Lipopolysaccharides/pharmacology , Receptors, Purinergic P2X7/metabolism , Signal Transduction/drug effects , Adenosine Triphosphate/metabolism , Animals , Apoptosis/drug effects , Calcium/metabolism , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , HEK293 Cells/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques
13.
Pharmacol Rev ; 63(3): 641-83, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21737531

ABSTRACT

Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions.


Subject(s)
Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Purinergic P2X Receptor Agonists/pharmacology , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X/chemistry , Receptors, Purinergic P2X/metabolism , Animals , Binding Sites , Humans , Metals/pharmacology , Metals/toxicity , Nerve Tissue Proteins/genetics , Protein Conformation , Protein Isoforms/agonists , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Receptors, Purinergic P2X/genetics
14.
Rev Neurosci ; 22(3): 335-54, 2011.
Article in English | MEDLINE | ID: mdl-21639805

ABSTRACT

Seven mammalian purinergic receptor subunits, denoted P2X1-P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca(2+) influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites.


Subject(s)
Adenosine Triphosphate/metabolism , Ion Channel Gating/physiology , Metals/metabolism , Receptors, Purinergic P2X/physiology , Adenosine Triphosphate/pharmacology , Allosteric Regulation/physiology , Animals , Humans , Ion Channel Gating/drug effects , Ion Channel Gating/genetics , Ivermectin/pharmacology , Membrane Potentials/drug effects , Membrane Potentials/genetics , Models, Biological , Mutation/genetics , Receptors, Purinergic P2X/genetics
15.
Auton Neurosci ; 165(2): 156-62, 2011 Dec 07.
Article in English | MEDLINE | ID: mdl-21684220

ABSTRACT

The development of sympathetic overactivity and hypertension in rats submitted to chronic intermittent hypoxia (CIH) involve alterations in the central mechanisms controlling respiratory and autonomic functions. Herein, we assessed whether CIH alters glutamatergic and/or purinergic signaling in the ventrolateral medulla (VLM), a region that encompasses the pre-sympathetic neurons and respiratory neurons of the ventral respiratory column. Groups of juvenile rats were exposed for 10 days to CIH (6% O(2) for 40s, every 9min, 8h/day) or normoxia (controls). Following treatment, in situ working heart-brainstem preparations were performed to record simultaneously respiratory and sympathetic motor outputs. In separate CIH and control groups, the VLM was dissected for western-blot analyses of ionotropic glutamatergic and P2 receptors. l-glutamate microinjections (1, 3 or 10mM) into VLM of control (n=6) and CIH groups (n=10) produced similar increases of sympathetic and abdominal activities associated with phrenic nerve inhibition; immunoreactive NMDAR1 and GluR2/3 densities at the VLM were also alike between groups (n=4). In contrast, VLM microinjections of ATP (1, 10 or 50mM) evoked larger sympatho-excitatory responses in CIH (n=8) than in control rats (n=7, P<0.05) whilst the abdominal increase and phrenic nerve inhibition were of comparable magnitudes. The immunoreactive densities of P2X3 and P2X4 receptors, but not P2X1 and P2Y2, were 20% higher in VLM of CIH (n=8; P<0.05) than controls (n=8). Altogether, our findings suggest that CIH augments purinergic signaling in the VLM, supporting the concept that nucleotides play a role in the dynamic central control of the sympathetic autonomic function.


Subject(s)
Adenosine Triphosphate/metabolism , Glutamic Acid/metabolism , Hypoxia/physiopathology , Medulla Oblongata/physiopathology , Sympathetic Nervous System/physiopathology , Animals , Blotting, Western , Hypoxia/metabolism , Male , Medulla Oblongata/metabolism , Rats , Rats, Wistar , Receptors, Purinergic P2X3/metabolism , Receptors, Purinergic P2X4/metabolism
16.
Eur J Neurosci ; 33(7): 1175-1185, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21324005

ABSTRACT

Zn²(+) is an essential ion that is stored in and co-released from glutamatergic synapses and it modulates neurotransmitter receptors involved in long-term potentiation (LTP). However, the mechanism(s) underlying Zn²(+) -induced modulation of LTP remain(s) unclear. As the purinergic P2X receptors are relevant targets for Zn²(+) action, we have studied their role in LTP modulation by Zn²(+) in the CA1 region of rat hippocampal slices. Induction of LTP in the presence of Zn²(+) revealed a biphasic effect - 5-50 µm enhanced LTP induction, whereas 100-300 µm Zn²(+) inhibited LTP. The involvement of a purinergic mechanism is supported by the fact that application of the P2X receptor antagonists 2',3'-O-(2,4,6-trinitrophenyl) ATP (TNP-ATP) and periodate-oxidized ATP fully abolished the facilitatory effect of Zn²(+) . Notably, application of the P2X7 receptor-specific antagonist Brilliant Blue G did not modify the Zn²(+) -dependent facilitation of LTP. Exogenous ATP also produced a biphasic effect - 0.1-1 µm ATP facilitated LTP, whereas 5-10 µm inhibited LTP. The facilitatory effect of ATP was abolished by the application of TNP-ATP and was modified in the presence of 5 µm Zn²(+) , suggesting that P2X receptors are involved in LTP induction and that Zn²(+) leads to an increase in the affinity of P2X receptors for ATP. The latter confirms our previous results from heterologous expression systems. Collectively, our results indicate that Zn²(+) at low concentrations enhances LTP by modulating P2X receptors. Although it is not yet clear which purinergic receptor subtype(s) is responsible for these effects on LTP, the data presented here suggest that P2X4 but not P2X7 is involved.


Subject(s)
CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/physiology , Long-Term Potentiation/drug effects , Receptors, Purinergic P2X/metabolism , Zinc/pharmacology , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Animals , Electrophysiology , Long-Term Potentiation/physiology , Male , Purinergic P2X Receptor Agonists/pharmacology , Purinergic P2X Receptor Antagonists/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Purinergic P2X4/metabolism , Receptors, Purinergic P2X7/metabolism
17.
Placenta ; 32 Suppl 2: S81-9, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21227506

ABSTRACT

Workshops are an important part of the IFPA annual meeting. At IFPA Meeting 2010 there were twelve themed workshops, six of which are summarized in this report. 1. The immunology workshop focused on normal and pathological functions of the maternal immune system in pregnancy. 2. The transport workshop dealt with regulation of ion and water transport across the syncytiotrophoblast of human placenta. 3. The epigenetics workshop covered DNA methylation and its potential role in regulating gene expression in placental development and disease. 4. The vascular reactivity workshop concentrated on methodological approaches used to study placental vascular function. 5. The workshop on epitheliochorial placentation covered current advances from in vivo and in vitro studies of different domestic species. 6. The proteomics workshop focused on a variety of techniques and procedures necessary for proteomic analysis and how they may be implemented for placental research.


Subject(s)
Fetus/physiology , Placenta/physiology , Trophoblasts/physiology , Animals , Education , Epigenesis, Genetic/physiology , Female , Fetus/blood supply , Fetus/cytology , Fetus/immunology , Humans , Ion Transport/physiology , Maternal-Fetal Exchange/physiology , Placenta/blood supply , Placenta/cytology , Placenta/immunology , Placentation/physiology , Pregnancy , Proteomics/methods , Trophoblasts/cytology , Trophoblasts/immunology
18.
Nucleic Acids Res ; 38(2): 618-32, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19889724

ABSTRACT

In this study, we demonstrate the identification of an internal ribosome entry site (IRES) within the 5'-untranslated region (5'-UTR) of the mouse mammary tumor virus (MMTV). The 5'-UTR of the full-length mRNA derived from the infectious, complete MMTV genome was cloned into a dual luciferase reporter construct containing an upstream Renilla luciferase gene (RLuc) and a downstream firefly luciferase gene (FLuc). In rabbit reticulocyte lysate, the MMTV 5'-UTR was capable of driving translation of the second cistron. In vitro translational activity from the MMTV 5'-UTR was resistant to the addition of m(7)GpppG cap-analog and cleavage of eIF4G by foot-and-mouth disease virus (FMDV) L-protease. IRES activity was also demonstrated in the Xenopus laevis oocyte by micro-injection of capped and polyadenylated bicistronic RNAs harboring the MMTV-5'-UTR. Finally, transfection assays showed that the MMTV-IRES exhibits cell type-dependent translational activity, suggesting a requirement for as yet unidentified cellular factors for its optimal function.


Subject(s)
5' Untranslated Regions , Mammary Tumor Virus, Mouse/genetics , Peptide Chain Initiation, Translational , RNA, Viral/chemistry , Animals , Cell Line , Humans , Luciferases, Firefly/analysis , Luciferases, Firefly/genetics , Nucleocytoplasmic Transport Proteins/metabolism , Oocytes/metabolism , Plasmids/genetics , Promoter Regions, Genetic , RNA Caps/antagonists & inhibitors , RNA, Messenger/chemistry , Rabbits , Xenopus laevis , rev Gene Products, Human Immunodeficiency Virus/metabolism
19.
J Biol Chem ; 285(5): 2940-50, 2010 Jan 29.
Article in English | MEDLINE | ID: mdl-19996104

ABSTRACT

Extracellular nucleotides transmit signals into the cells through the P2 family of cell surface receptors. These receptors are amply expressed in human blood vessels and participate in vascular tone control; however, their signaling mechanisms remain unknown. Here we show that in smooth muscle cells of isolated human chorionic arteries, the activation of the P2Y(2) receptor (P2Y(2)R) induces not only its partition into membrane rafts but also its rapid internalization. Cholesterol depletion with methyl-beta-cyclodextrin reduced the association of the agonist-activated receptor into membrane rafts but did not affect either the UTP-mediated vasoconstrictions or the vasomotor responses elicited by both serotonin and KCl. Ex vivo perfusion of human chorionic artery segments with 1-10 mum UTP, a selective P2Y(2)R agonist, displaced the P2Y(2)R localization into membrane rafts within 1 min, a process preceded by the activation of both RhoA and Rac1 GTPases. AG1478, a selective and potent inhibitor of the epidermal growth factor receptor tyrosine kinase activity, not only blocked the UTP-induced vasomotor activity but also abrogated both RhoA and Rac1 activation, the P2Y(2)R association with membrane rafts, and its internalization. Altogether, these results show for the first time that the plasma membrane distribution of the P2Y(2)R is transregulated by the epidermal growth factor receptor, revealing an unsuspected functional interplay that controls both the membrane distribution and the vasomotor activity of the P2Y(2)R in intact human blood vessels.


Subject(s)
Chorion/blood supply , ErbB Receptors/metabolism , Gene Expression Regulation , Receptors, Purinergic P2/biosynthesis , Uridine Triphosphate/metabolism , Actins/chemistry , Arteries/metabolism , Female , Humans , Ligands , Membrane Microdomains/metabolism , Placenta/metabolism , Pregnancy , Receptors, Purinergic P2/chemistry , Receptors, Purinergic P2Y2 , Signal Transduction , Uridine Triphosphate/chemistry , Vasomotor System/physiology
20.
J Neurosci ; 29(39): 12284-91, 2009 Sep 30.
Article in English | MEDLINE | ID: mdl-19793987

ABSTRACT

P2X receptor channels (P2XRs) are allosterically modulated by several compounds, mainly acting at the ectodomain of the receptor. Like copper, mercury, a metal that induces oxidative stress in cells, also stimulates the activity of P2X(2)R and inhibits the activity of P2X(4)R. However, the mercury modulation is not related to the extracellular residues critical for copper modulation. To identify the site(s) for mercury action, we generated two chimeras using the full size P2X(2) subunit, termed P2X(2a), and a splice variant lacking a 69 residue segment in the C terminal, termed P2X(2b), as the donors for intracellular and transmembrane segments and the P2X(4) subunit as the donor for ectodomain segment of chimeras. The potentiating effect of mercury on ATP-induced current was preserved in Xenopus oocytes expressing P2X(4/2a) chimera but was absent in oocytes expressing P2X(4/2b) chimera. Site-directed mutagenesis experiments revealed that the Cys(430) residue mediates effects of mercury on the P2X(2a)R activity. Because mercury could act as an oxidative stress inducer, we also tested whether hydrogen peroxide (H(2)O(2)) and mitochondrial stress inducers myxothiazol and rotenone mimicked mercury effects. These experiments, done in both oocytes and human embryonic kidney HEK293 cells, revealed that these compounds potentiated the ATP-evoked P2X(2a)R and P2X(4/2a)R currents but not P2X(2b)R and P2X(2a)-C430A and P2X(2a)-C430S mutant currents, whereas antioxidants dithiothreitrol and N-acetylcysteine prevented the H(2)O(2) potentiation. Alkylation of Cys(430) residue with methylmethane-thiosulfonate also abolished the mercury and H(2)O(2) potentiation. Altogether, these results are consistent with the hypothesis that the Cys(430) residue is an intracellular P2X(2a)R redox sensor.


Subject(s)
Cysteine/chemistry , Cysteine/physiology , Intracellular Fluid/physiology , Reactive Oxygen Species/metabolism , Receptors, Purinergic P2/chemistry , Receptors, Purinergic P2/physiology , Animals , Cell Line , Cysteine/genetics , Female , Humans , Intracellular Fluid/chemistry , Oxidation-Reduction , Rats , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2X2 , Xenopus laevis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...