Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(11): 117203, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35363007

ABSTRACT

Nanodiamonds with embedded nitrogen-vacancy (NV) centers have emerged as promising magnetic field sensors, as hyperpolarizing agents in biological environments, as well as efficient tools for spin mechanics with levitating particles. These applications currently suffer from random environmental interactions with the diamond which implies poor control of the N-V direction. Here, we predict and report on a strong diamagnetism of a pure spin origin mediated by a population inversion close to a level crossing in the NV center electronic ground state. We show control of the sign of the magnetic susceptibility as well as angle locking of the crystalline axis of a microdiamond along an external magnetic field, with bright perspectives for these applications.

2.
Nature ; 580(7801): 56-59, 2020 04.
Article in English | MEDLINE | ID: mdl-32238930

ABSTRACT

Observing and controlling macroscopic quantum systems has long been a driving force in quantum physics research. In particular, strong coupling between individual quantum systems and mechanical oscillators is being actively studied1-3. Whereas both read-out of mechanical motion using coherent control of spin systems4-9 and single-spin read-out using pristine oscillators have been demonstrated10,11, temperature control of the motion of a macroscopic object using long-lived electronic spins has not been reported. Here we observe a spin-dependent torque and spin-cooling of the motion of a trapped microdiamond. Using a combination of microwave and laser excitation enables the spins of nitrogen-vacancy centres to act on the diamond orientation and to cool the diamond libration via a dynamical back-action. Furthermore, by driving the system in the nonlinear regime, we demonstrate bistability and self-sustained coherent oscillations stimulated by spin-mechanical coupling, which offers the prospect of spin-driven generation of non-classical states of motion. Such a levitating diamond-held in position by electric field gradients   under vacuum-can operate as a 'compass' with controlled dissipation and has potential use in high-precision torque sensing12-14, emulation of the spin-boson problem15 and probing of quantum phase transitions16. In the single-spin limit17 and using ultrapure nanoscale diamonds, it could allow quantum non-demolition read-out of the spin of nitrogen-vacancy centres at ambient conditions, deterministic entanglement between distant individual spins18 and matter-wave interferometry16,19,20.

3.
Phys Rev Lett ; 121(5): 053602, 2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30118282

ABSTRACT

We report on observations of Ramsey interferences and spin echoes from electron spins inside a levitating macroscopic particle. The experiment is realized using nitrogen-vacancy (NV) centers hosted in a micron-sized diamond stored in a Paul trap both under atmospheric conditions and under vacuum. Spin echoes are used to show that the Paul trap preserves the coherence time of the embedded electron spins for more than microseconds. Conversely, the NV spin is employed to demonstrate high angular stability of the diamond even under vacuum. These results are significant steps towards strong coupling of NV spins to the rotational mode of levitating diamonds.

4.
Phys Rev Lett ; 120(18): 183401, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29775327

ABSTRACT

We propose and demonstrate the laser cooling and trapping of Rydberg-dressed Sr atoms. By off-resonantly coupling the excited state of a narrow (7 kHz) cooling transition to a high-lying Rydberg state, we transfer Rydberg properties such as enhanced electric polarizability to a stable magneto-optical trap operating at <1 µK. Simulations show that it is possible to reach a regime where the long-range interaction between Rydberg-dressed atoms becomes comparable to the kinetic energy, opening a route to combining laser cooling with tunable long-range interactions.

5.
Phys Rev Lett ; 113(2): 023006, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25062177

ABSTRACT

Ultracold gases excited to strongly interacting Rydberg states are a promising system for quantum simulations of many-body systems. For off-resonant excitation of such systems in the dissipative regime, highly correlated many-body states exhibiting, among other characteristics, intermittency and multimodal counting distributions are expected to be created. Here we report on the realization of a dissipative gas of rubidium Rydberg atoms and on the measurement of its full counting statistics and phase diagram for both resonant and off-resonant excitation. We find strongly bimodal counting distributions in the off-resonant regime that are compatible with intermittency due to the coexistence of dynamical phases. Our results pave the way towards detailed studies of many-body effects in Rydberg gases.

6.
Phys Rev Lett ; 108(2): 023005, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22324680

ABSTRACT

Cold Rydberg atoms subject to long-range dipole-dipole interactions represent a particularly interesting system for exploring few-body interactions and probing the transition from 2-body physics to the many-body regime. In this work we report the direct observation of a resonant 4-body Rydberg interaction. We exploit the occurrence of an accidental quasicoincidence of a 2-body and a 4-body resonant Stark-tuned Förster process in cesium to observe a resonant energy transfer requiring the simultaneous interaction of at least four neighboring atoms. These results are relevant for the implementation of quantum gates with Rydberg atoms and for further studies of many-body physics.

SELECTION OF CITATIONS
SEARCH DETAIL
...