Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 15(5): 1107-1121, 2021 10.
Article in English | MEDLINE | ID: mdl-34665740

ABSTRACT

We present a systematic evaluation and optimization of a complex bio-medical signal processing application on the BrainWave prototype system, targeted towards ambulatory EEG monitoring within a tiny power budget of 1 mW. The considered BrainWave processor is completely programmable, while maintaining energy-efficiency by means of a Coarse-Grained Reconfigurable Array (CGRA). This is demonstrated through the mapping and evaluation of a state-of-the-art non-convulsive epileptic seizure detection algorithm, while ensuring real-time operation and seizure detection accuracy. Exploiting the CGRA leads to an energy reduction of 73.1%, compared to a highly tuned software implementation (SW-only). A total of 9 complex kernels were benchmarked on the CGRA, resulting in an average 4.7 × speedup and average 4.4 × energy savings over highly tuned SW-only implementations. The BrainWave processor is implemented in 28-nm FDSOI technology with 80 kB of Foundry-provided SRAM. By exploiting near-threshold computing for the logic and voltage-stacking to minimize on-chip voltage-conversion overhead, additional 15.2% and 19.5% energy savings are obtained, respectively. At the Minimum-Energy-Point (MEP) (223 µW, 8 MHz) we report a measured state-of-the-art 90.6% system conversion efficiency, while executing the epileptic seizure detection in real-time.


Subject(s)
Brain Waves , Seizures , Algorithms , Electroencephalography , Humans , Monitoring, Ambulatory , Seizures/diagnosis , Signal Processing, Computer-Assisted
2.
IEEE Trans Biomed Circuits Syst ; 8(2): 257-67, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24875285

ABSTRACT

This paper describes a mixed-signal ECG System-on-Chip (SoC) that is capable of implementing configurable functionality with low-power consumption for portable ECG monitoring applications. A low-voltage and high performance analog front-end extracts 3-channel ECG signals and single channel electrode-tissue-impedance (ETI) measurement with high signal quality. This can be used to evaluate the quality of the ECG measurement and to filter motion artifacts. A custom digital signal processor consisting of 4-way SIMD processor provides the configurability and advanced functionality like motion artifact removal and R peak detection. A built-in 12-bit analog-to-digital converter (ADC) is capable of adaptive sampling achieving a compression ratio of up to 7, and loop buffer integration reduces the power consumption for on-chip memory access. The SoC is implemented in 0.18 µm CMOS process and consumes 32 µ W from a 1.2 V while heart beat detection application is running, and integrated in a wireless ECG monitoring system with Bluetooth protocol. Thanks to the ECG SoC, the overall system power consumption can be reduced significantly.


Subject(s)
Electrocardiography/instrumentation , Lab-On-A-Chip Devices , Signal Processing, Computer-Assisted/instrumentation , Artifacts , Electrocardiography/methods , Equipment Design
3.
J Med Syst ; 35(5): 1289-98, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21373804

ABSTRACT

In order for wireless body area networks to meet widespread adoption, a number of security implications must be explored to promote and maintain fundamental medical ethical principles and social expectations. As a result, integration of security functionality to sensor nodes is required. Integrating security functionality to a wireless sensor node increases the size of the stored software program in program memory, the required time that the sensor's microprocessor needs to process the data and the wireless network traffic which is exchanged among sensors. This security overhead has dominant impact on the energy dissipation which is strongly related to the lifetime of the sensor, a critical aspect in wireless sensor network (WSN) technology. Strict definition of the security functionality, complete hardware model (microprocessor and radio), WBAN topology and the structure of the medium access control (MAC) frame are required for an accurate estimation of the energy that security introduces into the WBAN. In this work, we define a lightweight security scheme for WBAN, we estimate the additional energy consumption that the security scheme introduces to WBAN based on commercial available off-the-shelf hardware components (microprocessor and radio), the network topology and the MAC frame. Furthermore, we propose a new microcontroller design in order to reduce the energy consumption of the system. Experimental results and comparisons with other works are given.


Subject(s)
Computer Security/instrumentation , Electricity , Microcomputers , Monitoring, Physiologic/instrumentation , Telemetry/instrumentation , Computer Communication Networks , Equipment Design , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...