Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Chemistry ; 26(47): 10871-10881, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32315486

ABSTRACT

Since the seminal contribution of Rolf Huisgen to develop the [3+2] cycloaddition of 1,3-dipolar compounds, its azide-alkyne variant has established itself as the key step in numerous organic syntheses and bioorthogonal processes in materials science and chemical biology. In the present study, the copper(I)-catalyzed azide-alkyne cycloaddition was applied for the development of a modular molecular platform for medical imaging of the prostate-specific membrane antigen (PSMA), using positron emission tomography. This process is shown from molecular design, through synthesis automation and in vitro studies, all the way to pre-clinical in vivo evaluation of fluorine-18- labeled PSMA-targeting 'F-PSMA-MIC' radiotracers (t1/2 =109.7 min). Pre-clinical data indicate that the modular PSMA-scaffold has similar binding affinity and imaging properties to the clinically used [68 Ga]PSMA-11. Furthermore, we demonstrated that targeting the arene-binding in PSMA, facilitated through the [3+2]cycloaddition, can improve binding affinity, which was rationalized by molecular modeling. The here presented PSMA-binding scaffold potentially facilitates easy coupling to other medical imaging moieties, enabling future developments of new modular imaging agents.


Subject(s)
Alkynes/chemistry , Azides/chemistry , Cycloaddition Reaction , Fluorine Radioisotopes/chemistry , Positron-Emission Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Radioactive Tracers , Humans , Male
3.
J Med Chem ; 58(13): 5151-63, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-25719272

ABSTRACT

Plasmepsins (Plms) are aspartic proteases involved in the degradation of human hemoglobin by Plasmodium falciparum. Given that the parasite needs the resulting amino acid building blocks for its growth and development, plasmepsins are an important antimalarial drug target. Over the past decade, tremendous progress has been achieved in the development of inhibitors of plasmepsin using two strategies: structure-based drug design (SBDD) and structure-based virtual screening (SBVS). Herein, we review the inhibitors of Plms I-IV developed by SBDD or SBVS with a particular focus on obtaining selectivity versus the human Asp proteases cathepsins and renin and activity in cell-based assays. By use of SBDD, the flap pocket of Plm II has been discovered and constitutes a convenient handle to obtain selectivity. In SBVS, activity against Plms I-IV and selectivity versus cathepsins are not always taken into account. A combination of SBVS, SBDD, and molecular dynamics simulations opens up opportunities for future design cycles.


Subject(s)
Antimalarials/therapeutic use , Aspartic Acid Endopeptidases/antagonists & inhibitors , Drug Design , Malaria/drug therapy , Plasmodium falciparum/drug effects , Humans , Malaria/parasitology , Models, Molecular , Molecular Dynamics Simulation
4.
J Med Chem ; 57(21): 9204-10, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25279444

ABSTRACT

2-(2-Furanyl)-7-[2-[4-[4-(2-[(11)C]methoxyethoxy)phenyl]-1-piperazinyl]ethyl]7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine-5-amine [(11)C]-3 ([(11)C]Preladenant) was developed for mapping cerebral adenosine A2A receptors (A2ARs) with PET. The tracer was synthesized in high specific activity and purity. Tissue distribution was studied by PET imaging, ex vivo biodistribution (BD), and in vitro autoradiography (ARG) experiments. Regional brain uptake of [(11)C]-3 was consistent with known A2ARs distribution, with highest uptake in striatum. The results indicate that [(11)C]-3 has favorable brain kinetics and exhibits suitable characteristics as an A2AR PET tracer.


Subject(s)
Pyrimidines , Triazoles , Animals , Brain/metabolism , Isotope Labeling , Male , Positron-Emission Tomography/methods , Pyrimidines/blood , Pyrimidines/chemical synthesis , Rats, Wistar , Receptor, Adenosine A2A/metabolism , Tissue Distribution , Triazoles/blood , Triazoles/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...