Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Wiley Interdiscip Rev RNA ; : e1810, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37674370

ABSTRACT

Despite the discovery of modified nucleic acids nearly 75 years ago, their biological functions are still being elucidated. N6 -methyladenosine (m6 A) is the most abundant modification in eukaryotic messenger RNA (mRNA) and has also been detected in non-coding RNAs, including long non-coding RNA, ribosomal RNA, and small nuclear RNA. In general, m6 A marks can alter RNA secondary structure and initiate unique RNA-protein interactions that can alter splicing, mRNA turnover, and translation, just to name a few. Although m6 A marks in human RNAs have been known to exist since 1974, the structures and functions of methyltransferases responsible for writing m6 A marks have been established only recently. Thus far, there are four confirmed human methyltransferases that catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to the N6 position of adenosine, producing m6 A: methyltransferase-like protein (METTL) 3/METTL14 complex, METTL16, METTL5, and zinc-finger CCHC-domain-containing protein 4. Though the methyltransferases have unique RNA targets, all human m6 A RNA methyltransferases contain a Rossmann fold with a conserved SAM-binding pocket, suggesting that they utilize a similar catalytic mechanism for methyl transfer. For each of the human m6 A RNA methyltransferases, we present the biological functions and links to human disease, RNA targets, catalytic and kinetic mechanisms, and macromolecular structures. We also discuss m6 A marks in human viruses and parasites, assigning m6 A marks in the transcriptome to specific methyltransferases, small molecules targeting m6 A methyltransferases, and the enzymes responsible for hypermodified m6 A marks and their biological functions in humans. Understanding m6 A methyltransferases is a critical steppingstone toward establishing the m6 A epitranscriptome and more broadly the RNome. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.

3.
Wiley Interdiscip Rev RNA ; 11(5): e1595, 2020 09.
Article in English | MEDLINE | ID: mdl-32301288

ABSTRACT

The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.


Subject(s)
RNA Processing, Post-Transcriptional , Ribonucleosides/genetics , Ribonucleosides/metabolism , High-Throughput Nucleotide Sequencing , Humans , Hydrogen Bonding , Mass Spectrometry , Metabolic Networks and Pathways , Nucleic Acid Conformation , Ribonucleosides/chemistry , Sequence Analysis, RNA , Structure-Activity Relationship
4.
Nucleic Acids Res ; 48(6): 3304-3314, 2020 04 06.
Article in English | MEDLINE | ID: mdl-31930330

ABSTRACT

Three-dimensional structures have been solved for several naturally occurring RNA triple helices, although all are limited to six or fewer consecutive base triples, hindering accurate estimation of global and local structural parameters. We present an X-ray crystal structure of a right-handed, U•A-U-rich RNA triple helix with 11 continuous base triples. Due to helical unwinding, the RNA triple helix spans an average of 12 base triples per turn. The double helix portion of the RNA triple helix is more similar to both the helical and base step structural parameters of A'-RNA rather than A-RNA. Its most striking features are its wide and deep major groove, a smaller inclination angle and all three strands favoring a C3'-endo sugar pucker. Despite the presence of a third strand, the diameter of an RNA triple helix remains nearly identical to those of DNA and RNA double helices. Contrary to our previous modeling predictions, this structure demonstrates that an RNA triple helix is not limited in length to six consecutive base triples and that longer RNA triple helices may exist in nature. Our structure provides a starting point to establish structural parameters of the so-called 'ideal' RNA triple helix, analogous to A-RNA and B-DNA double helices.


Subject(s)
DNA/genetics , Models, Molecular , Molecular Conformation , RNA/ultrastructure , Adenosine/chemistry , Adenosine/genetics , DNA/chemistry , DNA/ultrastructure , Hydrogen Bonding , Nucleic Acid Conformation , Protein Conformation, alpha-Helical/genetics , RNA/genetics , Uridine/chemistry , Uridine/genetics
5.
Nucleic Acids Res ; 47(14): 7213-7222, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31265072

ABSTRACT

Recent studies suggest noncoding RNAs interact with genomic DNA, forming an RNA•DNA-DNA triple helix that regulates gene expression. However, base triplet composition of pyrimidine motif RNA•DNA-DNA triple helices is not well understood beyond the canonical U•A-T and C•G-C base triplets. Using native gel-shift assays, the relative stability of 16 different base triplets at a single position, Z•X-Y (where Z = C, U, A, G and X-Y = A-T, G-C, T-A, C-G), in an RNA•DNA-DNA triple helix was determined. The canonical U•A-T and C•G-C base triplets were the most stable, while three non-canonical base triplets completely disrupted triple-helix formation. We further show that our RNA•DNA-DNA triple helix can tolerate up to two consecutive non-canonical A•G-C base triplets. Additionally, the RNA third strand must be at least 19 nucleotides to form an RNA•DNA-DNA triple helix but increasing the length to 27 nucleotides does not increase stability. The relative stability of 16 different base triplets in DNA•DNA-DNA and RNA•RNA-RNA triple helices was distinctly different from those in RNA•DNA-DNA triple helices, showing that base triplet stability depends on strand composition being DNA and/or RNA. Multiple factors influence the stability of triple helices, emphasizing the importance of experimentally validating formation of computationally predicted triple helices.


Subject(s)
DNA/chemistry , Nucleic Acid Conformation , Oligodeoxyribonucleotides/chemistry , RNA, Untranslated/chemistry , RNA/chemistry , Algorithms , Base Composition , Base Sequence , Codon/genetics , DNA/genetics , Genetic Code , Hydrogen-Ion Concentration , Kinetics , Nucleotide Motifs , Oligodeoxyribonucleotides/genetics , RNA/genetics , RNA, Untranslated/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...