Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 57(10): 4273-88, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24738581

ABSTRACT

A novel series of nonsteroidal mineralocorticoid receptor (MR) antagonists identified as part of our strategy to follow up on the clinical candidate PF-03882845 (2) is reported. Optimization departed from the previously described pyrazoline 3a and focused on improving the selectivity for MR versus the progesterone receptor (PR) as an approach to avoid potential sex-hormone-related adverse effects and improving biopharmaceutical properties. From this effort, (R)-14c was identified as a potent nonsteroidal MR antagonist (IC50 = 4.5 nM) with higher than 500-fold selectivity versus PR and other related nuclear hormone receptors, with improved solubility as compared to 2 and pharmacokinetic properties suitable for oral administration. (R)-14c was evaluated in vivo using the increase of urinary Na(+)/K(+) ratio in rat as a mechanism biomarker of MR antagonism. Treatment with (R)-14c by oral administration resulted in significant increases in urinary Na(+)/K(+) ratio and demonstrated this novel compound acts as an MR antagonist.


Subject(s)
Mineralocorticoid Receptor Antagonists/chemical synthesis , Nicotinic Acids/chemical synthesis , Pyrazoles/chemical synthesis , Animals , Drug Discovery , Male , Mineralocorticoid Receptor Antagonists/pharmacology , Molecular Docking Simulation , Nicotinic Acids/pharmacology , Potassium/urine , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Mineralocorticoid/chemistry , Sodium/urine , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 18(23): 6071-7, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18951788

ABSTRACT

The synthesis and SAR for a series of diaminopyrimidines as PYK2 inhibitors are described. Using a combination of library and traditional medicinal chemistry techniques, a FAK-selective chemical series was transformed into compounds possessing good PYK2 potency and 10- to 20-fold selectivity against FAK. Subsequent studies found that the majority of the compounds were positive in a reactive metabolite assay, an indicator for potential toxicological liabilities. Based on the proposed mechanism for bioactivation, as well as a combination of structure-based drug design and traditional medicinal chemistry techniques, a follow-up series of PYK2 inhibitors was identified that maintained PYK2 potency, FAK selectivity and HLM stability, yet were negative in the RM assay.


Subject(s)
Focal Adhesion Kinase 2/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Animals , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Disease Models, Animal , Drug Design , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Humans , Molecular Conformation , Molecular Structure , Osteoporosis/drug therapy , Pyrimidines/chemistry , Rats , Structure-Activity Relationship
3.
Proc Natl Acad Sci U S A ; 104(25): 10619-24, 2007 Jun 19.
Article in English | MEDLINE | ID: mdl-17537919

ABSTRACT

Bone is accrued and maintained primarily through the coupled actions of bone-forming osteoblasts and bone-resorbing osteoclasts. Cumulative in vitro studies indicated that proline-rich tyrosine kinase 2 (PYK2) is a positive mediator of osteoclast function and activity. However, our investigation of PYK2-/- mice did not reveal evidence supporting an essential function for PYK2 in osteoclasts either in vivo or in culture. We find that PYK2-/- mice have high bone mass resulting from an unexpected increase in bone formation. Consistent with the in vivo findings, mouse bone marrow cultures show that PYK2 deficiency enhances differentiation and activity of osteoprogenitor cells, as does expressing a PYK2-specific short hairpin RNA or dominantly interfering proteins in human mesenchymal stem cells. Furthermore, the daily administration of a small-molecule PYK2 inhibitor increases bone formation and protects against bone loss in ovariectomized rats, an established preclinical model of postmenopausal osteoporosis. In summary, we find that PYK2 regulates the differentiation of early osteoprogenitor cells across species and that inhibitors of the PYK2 have potential as a bone anabolic approach for the treatment of osteoporosis.


Subject(s)
Focal Adhesion Kinase 2/physiology , Osteoblasts/physiology , Osteoclasts/physiology , Osteogenesis/physiology , Osteoporosis/therapy , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/physiology , Cell Differentiation , Cells, Cultured , Enzyme Inhibitors/therapeutic use , Female , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Mice , Mice, Knockout , Ovariectomy , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...