Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Animal ; 15(7): 100264, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34102431

ABSTRACT

There are time-tested assessments for the environmental and economic aspects of sustainability. Its societal aspect has mainly been approached through the assessment of animal welfare. However, the intrinsic quality of milk is seldom taken into account. We developed a participatory construction method for the overall assessment of intrinsic milk quality in its different dimensions (sensory, technological, nutritional and health), according to the fate of the raw milk. Two assessment models were developed, for semi-skimmed standardized ultra-high temperature (UHT) milk and for pressed uncooked non-standardized raw milk cheese. They were constructed by a participatory approach involving experts in the dairy sector with the aim to obtain a diagnostic tool that could be used in the field to help farmers to manage the quality of their milk (by prioritizing improvements on major problems). They were shaped from prerequisite specifications (limited costs and time of application, desire to obtain a transparent tool with all the steps kept visible) and current technical and scientific knowledge. They were based on indicators obtained from raw bulk tank milk analyses (30 for UHT milk and 50 for cheese assessments), which were then aggregated into criteria, principles, dimensions and overall intrinsic quality at farm level. The assessment models had parts in common, for example, same four dimensions, common indicators for health and nutritional dimensions. They also had process-specific features: units chosen, criteria, indicators and weightings in relation to the final product specifications. For instance, sensory and technological dimensions are more complex and preponderant in the cheese assessment (three principles for cheese vs one for UHT milk in both dimensions). Another example is the lack of microbial pathogens (as potential health risk for consumer) in the UHT milk assessment because of pasteurization. The assessment models then underwent a sensitivity analysis and an application in 30 farms in indoor and grazing periods to finally obtain overall UHT milk and cheese quality scores at a 1-year level. The tool was found to be applicable at farm level. However, we observed low overall quality scores with a narrow dispersion, characteristic of a severe evaluation. Even so, the assessment models showed up seasonal differences of the UHT milk and cheese quality at both overall and dimensional levels. In the light of new scientific knowledge and future quality objectives, these are adaptable to other dairy products allowing for their specific features.


Subject(s)
Cheese , Milk , Animals , Cattle , Farmers , Farms , Humans
2.
J Dairy Sci ; 104(1): 112-125, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33162089

ABSTRACT

The ability of mid-infrared spectroscopy (MIR) to predict indicators (1) of diet composition in dairy herds and (2) for the authentication of the cow feeding restrictions included in the specification of 2 Protected Designation of Origin (PDO) cheeses (Cantal and Laguiole) was tested on 7,607 bulk milk spectra from 1,355 farms located in the Massif Central area of France. For each milk sample, the corresponding cow diet composition data were obtained through on-farm surveys. The cow diet compositions varied largely (i.e., from full grazing for extensive farming systems to corn silage-based diets, which are typical of more intensive farming systems). Partial least square regression and discriminant analysis were used to predict the proportion of different feedstuffs in the cows' diets and to authenticate the cow feeding restrictions for the PDO cheese specifications, respectively. The groups for the discriminant analysis were created by dividing the data set according to the threshold of a specific feedstuff. They were issued based on the specifications of the restriction of the PDO cheese. The pasture proportion in the cows' diets was predicted by MIR with an coefficient of determination in external validation (R2V) = 0.81 and a standard error of prediction of 11.7% dry matter. Pasture + hay, corn silage, conserved herbage, fermented forage, and total herbage proportion in the cows' diets were predicted with a R2V >0.61 and a standard error of prediction <14.8. The discrimination models for pasture presence, pasture ≥50%, and pasture ≥57% in the cows' diets achieved an accuracy and specificity ≥90%. A sensitivity and precision ≥85% were also observed for the pasture proportion discrimination models, but both of these indexes decreased at increasing thresholds from 0 to 50, and 57% pasture in the cows' diets. An accuracy ≥80% was also observed for pasture + hay ≥72%, herbage ≥50%, pasture + hay ≥25%, absence of fermented herbage, absence of corn silage, and corn silage ≤30% in the cows' diets, but for several models, either the sensitivity or precision was lower than the accuracy. Models built on the simultaneous respect of all the criteria of the feeding restrictions of PDO cheese specifications achieved an accuracy, specificity, sensitivity, and precision >90%. Both the regression and discriminant MIR models for bulk milk can provide useful indicators of cow diet composition and PDO cheese specifications to producers and consumers (farmers, dairy plants).


Subject(s)
Animal Feed , Cheese , Diet/veterinary , Milk/chemistry , Spectrophotometry, Infrared/veterinary , Animal Feed/analysis , Animals , Cattle , Cheese/analysis , France , Least-Squares Analysis , Silage/analysis , Zea mays
3.
Appl Opt ; 59(27): 8380-8387, 2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32976425

ABSTRACT

Talbot-Lau x-ray interferometry is a grating-based phase-contrast technique, which enables measurement of refractive index changes in matter with micrometric spatial resolution. The technique has been established using a variety of hard x-ray sources, including synchrotron, free-electron lasers, and x-ray tubes, and could be used in the optical range for low-density plasmas. The tremendous development of table-top high-power lasers makes the use of high-intensity, laser-driven K-alpha sources appealing for Talbot-Lau interferometer applications in both high-energy-density plasma experiments and biological imaging. To this end, we present the first, to the best of our knowledge, feasibility study of Talbot-Lau phase-contrast imaging using a high-repetition-rate laser of moderate energy (100 mJ at a repetition rate of 10 Hz) to irradiate a copper backlighter foil. The results from up to 900 laser pulses were integrated to form interferometric images. A constant fringe contrast of 20% is demonstrated over 100 accumulations, while the signal-to-noise ratio continued to increase with the number of shots. Phase retrieval is demonstrated without prior ex-situ phase stepping. Instead, correlation matrices are used to compensate for the displacement between reference acquisition and the probing of a PMMA target rod. The steps for improved measurements with more energetic laser systems are discussed. The final results are in good agreement with the theoretically predicted outcomes, demonstrating the applicability of this diagnostic to a range of laser facilities for use across several disciplines.

5.
Rev Sci Instrum ; 89(10): 103301, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399874

ABSTRACT

The targets that are used to produce high-energy protons with ultra-high intensity lasers generate a strong electromagnetic pulse (EMP). To mitigate that undesired side effect, we developed and tested a concept called the "birdhouse." It consists in confining the EMP field in a finite volume and in dissipating the trapped electromagnetic energy with an electric resistor. A prototype was tested at a 10 TW 50 fs laser facility. The recorded average EMP mitigation ratio is about 20 for frequencies from 100 MHz to 6 GHz. The EMP mitigation ratio attains the level of 50 in the frequency range of 1-2 GHz where microwave emission is maximal. We measured the intensity of proton emission in two directions: along the laser propagation direction and along the edge of the proton beam. We observed that the "birdhouse" induces a two-fold increase of the intensity in the center of the proton beam and a two-fold reduction of the intensity on its edge. We did not observe any modification of the proton beam normalized spectrum.

7.
Nat Commun ; 9(1): 102, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29317653

ABSTRACT

Intense lasers interacting with dense targets accelerate relativistic electron beams, which transport part of the laser energy into the target depth. However, the overall laser-to-target energy coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser-plasma interaction. Here we demonstrate that an efficient guiding of MeV electrons with about 30 MA current in solid matter is obtained by imposing a laser-driven longitudinal magnetostatic field of 600 T. In the magnetized conditions the transported energy density and the peak background electron temperature at the 60-µm-thick target's rear surface rise by about a factor of five, as unfolded from benchmarked simulations. Such an improvement of energy-density flux through dense matter paves the ground for advances in laser-driven intense sources of energetic particles and radiation, driving matter to extreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessible at the laboratory scale and achieving high-gain laser-driven thermonuclear fusion.

8.
Phys Rev Lett ; 118(20): 205001, 2017 May 19.
Article in English | MEDLINE | ID: mdl-28581770

ABSTRACT

Collimated transport of ultrahigh intensity electron current was observed in cold and in laser-shocked vitreous carbon, in agreement with simulation predictions. The fast electron beams were created by coupling high-intensity and high-contrast laser pulses onto copper-coated cones drilled into the carbon samples. The guiding mechanism-observed only for times before the shock breakout at the inner cone tip-is due to self-generated resistive magnetic fields of ∼0.5-1 kT arising from the intense currents of fast electrons in vitreous carbon, by virtue of its specific high resistivity over the range of explored background temperatures. The spatial distribution of the electron beams, injected through the samples at different stages of compression, was characterized by side-on imaging of hard x-ray fluorescence.

9.
Rev Sci Instrum ; 87(4): 043108, 2016 04.
Article in English | MEDLINE | ID: mdl-27131655

ABSTRACT

Thanks to their high dynamic range and ability to withstand electromagnetic pulse, imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. In the framework of the development of the diagnostics for the Petawatt Aquitaine Laser facility, we present an absolute calibration and spatial resolution study of five different available types of IP (namely, MS-SR-TR-MP-ND) performed by using laser-induced K-shell X-rays emitted by a solid silver target irradiated by the laser ECLIPSE at CEntre Lasers Intenses et Applications. In addition, IP sensitivity measurements were performed with a 160 kV X-ray generator at CEA DAM DIF, where the absolute response of IP SR and TR has been calibrated to X-rays in the energy range 8-75 keV with uncertainties of about 15%. Finally, the response functions have been modeled in Monte Carlo GEANT4 simulations in order to reproduce experimental data. Simulations enable extrapolation of the IP response functions to photon energies from 1 keV to 1 GeV, of interest, e.g., for laser-driven radiography.

11.
Article in English | MEDLINE | ID: mdl-26565356

ABSTRACT

A model providing an accurate estimate of the charge accumulation on the surface of a metallic target irradiated by a high-intensity laser pulse of fs-ps duration is proposed. The model is confirmed by detailed comparisons with specially designed experiments. Such a model is useful for understanding the electromagnetic pulse emission and the quasistatic magnetic field generation in laser-plasma interaction experiments.

12.
Rev Sci Instrum ; 86(7): 073507, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26233383

ABSTRACT

In an experiment at the laser facility ECLIPSE of the CELIA laboratory, University of Bordeaux, we measure the reflectivity of spherically bent crystals that are commonly used to investigate the propagation of fast electrons through the Kα radiation they generate in matter. The experimental reflectivity compares well with predictions from a ray-tracing code that takes into account the specific geometry, although the crystals seem to suffer from aging problems.

14.
Article in English | MEDLINE | ID: mdl-25974601

ABSTRACT

In this paper we describe the physical processes that lead to the generation of giant electromagnetic pulses (GEMPs) at powerful laser facilities. Our study is based on experimental measurements of both the charging of a solid target irradiated by an ultra-short, ultra-intense laser and the detection of the electromagnetic emission in the GHz domain. An unambiguous correlation between the neutralization current in the target holder and the electromagnetic emission shows that the source of the GEMP is the remaining positive charge inside the target after the escape of fast electrons accelerated by the ultra-intense laser. A simple model for calculating this charge in the thick target case is presented. From this model and knowing the geometry of the target holder, it becomes possible to estimate the intensity and the dominant frequencies of the GEMP at any facility.

15.
Phys Rev Lett ; 114(9): 095004, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25793822

ABSTRACT

Energy loss in the transport of a beam of relativistic electrons in warm dense aluminum is measured in the regime of ultrahigh electron beam current density over 2×10^{11} A/cm^{2} (time averaged). The samples are heated by shock compression. Comparing to undriven cold solid targets, the roles of the different initial resistivity and of the transient resistivity (upon target heating during electron transport) are directly observable in the experimental data, and are reproduced by a comprehensive set of simulations describing the hydrodynamics of the shock compression and electron beam generation and transport. We measured a 19% increase in electron resistive energy loss in warm dense compared to cold solid samples of identical areal mass.

16.
Rev Sci Instrum ; 85(11): 11D615, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430191

ABSTRACT

Transmission crystal spectrometers (TCS) are used on many laser facilities to record hard X-ray spectra. During experiments, signal recorded on imaging plates is often degraded by a background noise. Monte-Carlo simulations made with the code GEANT4 show that this background noise is mainly generated by diffusion of MeV electrons and very hard X-rays. An experiment, carried out at LULI2000, confirmed that the use of magnets in front of the diagnostic, that bent the electron trajectories, reduces significantly this background. The new spectrometer SPECTIX (Spectromètre PETAL à Cristal en TransmIssion X), built for the LMJ/PETAL facility, will include this optimized shielding.

17.
Article in English | MEDLINE | ID: mdl-24580341

ABSTRACT

Interaction of high-intensity laser pulses with solid targets results in generation of large quantities of energetic electrons that are the origin of various effects such as intense x-ray emission, ion acceleration, and so on. Some of these electrons are escaping the target, leaving behind a significant positive electric charge and creating a strong electromagnetic pulse long after the end of the laser pulse. We propose here a detailed model of the target electric polarization induced by a short and intense laser pulse and an escaping electron bunch. A specially designed experiment provides direct measurements of the target polarization and the discharge current in the function of the laser energy, pulse duration, and target size. Large-scale numerical simulations describe the energetic electron generation and their emission from the target. The model, experiment, and numerical simulations demonstrate that the hot-electron ejection may continue long after the laser pulse ends, enhancing significantly the polarization charge.


Subject(s)
Electrons , Lasers , Models, Chemical , Plasma Gases/chemistry , Plasma Gases/radiation effects , Computer Simulation , Electron Transport
18.
Rev Sci Instrum ; 84(8): 083505, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24007063

ABSTRACT

A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically intense laser-solid interactions is described. The Monte Carlo techniques used to extract the fast electron spectrum and laser energy absorbed into forward-going fast electrons are detailed. A relativistically intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data were interpreted using the 3-spatial-dimension Monte Carlo code MCNPX [D. Pelowitz, MCNPX User's Manual Version 2.6.0, Los Alamos National Laboratory, 2008], and the fast electron temperature found to be 125 keV.

19.
Phys Rev Lett ; 111(24): 245004, 2013 Dec 13.
Article in English | MEDLINE | ID: mdl-24483671

ABSTRACT

We have probed, with time-resolved x-ray absorption near-edge spectroscopy (XANES), a femtosecond-laser-heated aluminum foil with fluences up to 1 J/cm2. The spectra reveal a loss of the short-range order in a few picoseconds. This time scale is compared with the electron-ion equilibration time, calculated with a two-temperature model. Hydrodynamic simulations shed light on complex features that affect the foil dynamics, including progressive density change from solid to liquid (∼10 ps). In this density range, quantum molecular dynamics simulations indicate that XANES is a relevant probe of the ionic temperature.

20.
Phys Rev Lett ; 109(25): 255002, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23368474

ABSTRACT

We present experimental and numerical results on intense-laser-pulse-produced fast electron beams transport through aluminum samples, either solid or compressed and heated by laser-induced planar shock propagation. Thanks to absolute K(α) yield measurements and its very good agreement with results from numerical simulations, we quantify the collisional and resistive fast electron stopping powers: for electron current densities of ≈ 8 × 10(10) A/cm(2) they reach 1.5 keV/µm and 0.8 keV/µm, respectively. For higher current densities up to 10(12)A/cm(2), numerical simulations show resistive and collisional energy losses at comparable levels. Analytical estimations predict the resistive stopping power will be kept on the level of 1 keV/µm for electron current densities of 10(14)A/cm(2), representative of the full-scale conditions in the fast ignition of inertially confined fusion targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...