Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 118(5): 055002, 2017 Feb 03.
Article in English | MEDLINE | ID: mdl-28211711

ABSTRACT

The role of laser speckle structure (hot spots) and its ponderomotive self-focusing (PSF), in crossed beam energy transfer (CBET), of smoothed laser beams is investigated in an inhomogeneous expanding plasma. Numerical simulations using the code harmony in two spatial dimensions, demonstrate how self-focusing of laser hot spots in crossed beams can significantly affect the transfer of energy from one beam to the other in addition to the stimulated Brillouin scattering (SBS) process. It is shown that for sufficiently intense laser beams, when the laser hot spots exceed the criterion for self-focusing in a plasma with flow, the angular spread of transmitted light beams increases considerably with the intensity, which arises in particular, in expanding plasma where significant beam deflection is observed. It is shown for the first time that besides SBS, the contribution of speckle structure, PSF, and deflections of the intense hot spots in multiple speckle beams to CBET, therefore matters.

2.
Phys Rev Lett ; 117(23): 235002, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27982626

ABSTRACT

Experiments have been performed evidencing significant stimulated Raman sidescattering (SRS) at large angles from the density gradient. This was achieved in long scale-length high-temperature plasmas in which two beams couple to the same scattered electromagnetic wave further demonstrating for the first time this multiple-beam collective SRS interaction. The collective nature of the coupling and the amplification at large angles from the density gradient increase the global SRS losses and produce light scattered in novel directions out of the planes of incidence of the beams. These findings obtained in plasmas conditions relevant of inertial confinement fusion experiments similarly apply to the more complex geometry of these experiments where anomalously large levels of SRS were measured.

3.
Phys Rev Lett ; 117(14): 145001, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27740791

ABSTRACT

Amplification of a picosecond pulse beam by a lower intensity nanosecond pulse beam was experimentally observed in a flowing plasma. Modifications of intensity distributions in beam focal spots due to nonhomogeneous energy transfer and its transient regime were investigated. The mean transferred power reached 57% of the incident power of the nanosecond pulse beam. An imaging diagnostic allowed the intensity profile of the picosecond pulse beam to be determined, bringing to evidence the spatial nonuniformity of energy transfer in the amplified beam. This diagnostic also enabled us to observe the temporal evolution of the speckle intensity distribution because of the transfer. These results are reproduced by numerical simulations of two complementary codes. The method and the observed effects are important for the understanding of experiments with multiple crossing laser beams in plasmas.

4.
Phys Rev Lett ; 108(14): 145003, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22540800

ABSTRACT

The autoresonant behavior of Langmuir waves excited by stimulated Raman scattering (SRS) is clearly identified in particle-in-cell (PIC) simulations in an inhomogeneous plasma. As previously shown via a 3-wave coupling model [T. Chapman et al., Phys. Plasmas 17, 122317 (2010)], weakly kinetic effects such as trapping can be described via an amplitude-dependent frequency shift that compensates the dephasing of the resonance of SRS due to the inhomogeneity. The autoresonance (AR) leads to phase locking and to growth of the Langmuir wave beyond the spatial amplification expected from Rosenbluth's model in an inhomogeneous profile [M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972)]. Results from PIC simulations and from a 3-wave coupling code show very good agreement, leading to the conclusion that AR arises even beyond the so-called weakly kinetic regime.

5.
Phys Rev Lett ; 104(2): 025001, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20366602

ABSTRACT

The energy transfer from a long (3.5 ps) pump pulse to a short (400 fs) seed pulse due to stimulated Brillouin backscattering in the strong-coupling regime is investigated. The two pulses, both at the same wavelength of 1.057 microm are quasicounterpropagating in a preformed underdense plasma. Relative amplification factors for the seed pulse of up to 32 are obtained. The maximum obtained amplified energy is 60 mJ. Simulations are in agreement with the experimental results and suggest paths for further improvement of the amplification scheme.

6.
Phys Rev Lett ; 102(19): 195005, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19518967

ABSTRACT

This Letter presents first experimental results of the laser imprint reduction in fusion scale plasmas using a low-density foam layer. The experiments were conducted on the LIL facility at the energy level of 12 kJ with millimeter-size plasmas, reproducing the conditions of the initial interaction phase in the direct-drive scheme. The results include the generation of a supersonic ionization wave in the foam and the reduction of the initial laser fluctuations after propagation through 500 mum of foam with limited levels of stimulated Brillouin and Raman scattering. The smoothing mechanisms are analyzed and explained.

7.
Phys Rev Lett ; 97(20): 205001, 2006 Nov 17.
Article in English | MEDLINE | ID: mdl-17155686

ABSTRACT

We present results of two-dimensional simulations of the stimulated Brillouin scattering (SBS) of an optically smoothed laser beam propagating in an expanding plasma. In the weak damping limit, both backscattered and transmitted light waves exhibit an additional spatiotemporal incoherence, which is shown to be induced by SBS taking place in an inhomogeneous plasma. This mechanism is not related to laser-beam self-focusing and is thus complementary to plasma-induced smoothing [A. J. Schmitt and B. B. Afeyan, Phys. Plasmas 5, 503 (1998)]. The incoherence induced by SBS in the entrance part of the plasma could reduce the growth of parametric instabilities developing further inside the plasma and is able to significantly enlarge the spreading angle of the transmitted light. The angular width of the backscattered light is also found to be significantly larger than the aperture angle of the incident beam.

8.
Phys Rev Lett ; 95(2): 025001, 2005 Jul 08.
Article in English | MEDLINE | ID: mdl-16090690

ABSTRACT

In this Letter, we demonstrate the instantaneous creation of a hot solid-density plasma generated by focusing an intense femtosecond, high temporal contrast laser on an ultrathin foil (100 nm) in the 10(18) W/cm2 intensity range. The use of high-order harmonics generated in a gas jet, providing a probe beam of sufficiently short wavelengths to penetrate such a medium, enables the study of the dynamics of this plasma on the 100 fs time scale. The comparison of the transmission of two successive harmonics permits us to determine the electronic density and the temperature with accuracies better than 15%, never achieved up to this date in the regime of laser pulses at relativistic intensity.

9.
Phys Rev Lett ; 94(5): 055003, 2005 Feb 11.
Article in English | MEDLINE | ID: mdl-15783655

ABSTRACT

The electron kinetic effects are shown to play an important role in the nonlinear evolution of a driven ion-acoustic wave. The numerical simulation results obtained (i) with a hybrid code, in which the electrons behave as a fluid and the ions are described along the particle-in-cell (PIC) method, are compared with those obtained (ii) with a full-PIC code, in which the kinetic effects on both species are retained. The electron kinetic effects interplay with the usual fluid-type nonlinearity to give rise to a broadband spectrum of ion-acoustic waves saturated at a low level, even in the case of a strong excitation. This low asymptotic level might solve the long-standing problem of the small stimulated Brillouin scattering reflectivity observed in laser-plasma interaction experiments.

10.
Phys Rev Lett ; 90(7): 075002, 2003 Feb 21.
Article in English | MEDLINE | ID: mdl-12633235

ABSTRACT

Spatiotemporal smoothing of large-scale laser intensity fluctuations is observed for a laser beam focused into underdense helium plasmas. This smoothing is found to be severely enhanced when focusing the laser beam into a helium gas jet. In contrast to other experiments with preformed plasmas, the average and the peak laser intensities are well below the threshold for ponderomotive self-focusing. The coherence characteristics of the transmitted light are measured for various electron densities, and the smoothing effect is explained by multiple scattering of laser light on self-induced density perturbations.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(5 Pt 2): 057401, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11736149

ABSTRACT

The filament due to the self-guided propagation of an infrared femtosecond laser pulse in atmospheric-pressure air is used to trigger and guide an electric discharge. The long low density plasma channel due to the filament is first heated by the Joule effect during an initial transient plasma stage. The heated channel of recombined gas then hydrodynamically expands radially. The onset of a discharge starts when the density depression on axis reaches the threshold discharge value. This model is supported by detailed experimental and numerical analysis.

12.
Phys Rev Lett ; 87(25): 255003, 2001 Dec 17.
Article in English | MEDLINE | ID: mdl-11736585

ABSTRACT

We present simulations of the interaction of a random phase plate laser beam with an underdense, expanding plasma for conditions typical of recent LULI experiments. We use a new code that describes the paraxial propagation of the laser, accounting for the nonlinear evolution of the plasma in an isothermal fluid description with weakly collisional electrons. The transmitted light, in excellent agreement with experiment, is shown to be strongly redshifted as a result of self-phase modulation due to self-focusing.

13.
Article in English | MEDLINE | ID: mdl-11088579

ABSTRACT

The interaction of ultrashort subpicosecond laser pulses with initially cold and solid matter is investigated in a wide intensity range (10(11) to 10(17) W/cm(2)) by means of the hydrodynamic code MULTI-FS, which is an extension of the long pulse version of MULTI [R. Ramis, R. Schmalz, and J. Meyer-ter-Vehn, Comput. Phys. Commun. 49, 475 (1988)]. Essential modifications for the treatment of ultrashort pulses are the solution of Maxwell's equations in a steep gradient plasma, consideration of the nonequilibrium between electrons and ions, and a model for the electrical and thermal conductivity covering the wide range from the solid state to the high temperature plasma. The simulations are compared with several absorption measurements performed with aluminum targets at normal and oblique incidence. Good agreement is obtained by an appropriate choice of the electron-ion energy exchange time (characterized by 10 to 20 ps in cold solid Al). In addition we discuss the intensity scaling of the temperature, of the pressure, and of the density, where the laser energy is deposited in the expanding plasma, as well as the propagation of the heat wave and the shock wave into the solid. For laser pulse durations >/=150 fs considered in this paper the amount of isochorically heated matter at solid density is determined by the depth of the electron heat wave in the whole intensity range.

14.
Phys Rev Lett ; 85(21): 4526-9, 2000 Nov 20.
Article in English | MEDLINE | ID: mdl-11082587

ABSTRACT

The influence of laser beam smoothing on stimulated Brillouin backscattering (SBBS) is studied analytically in the limit of the independent hot spot model. It is shown that the temporal beam smoothing can reduce the SBBS reflectivity significantly even though the laser bandwidth is smaller than the growth rate for the average intensity. The explanation of this reduction effect is given in terms of SBBS growth in the statistically significant hot spots. The minimum laser bandwidth corresponding to an important reduction of the reflectivity is thus determined properly. The dependence of this reduction effect on the acoustic damping for a given laser bandwidth is discussed.

15.
Phys Rev Lett ; 84(13): 2869-72, 2000 Mar 27.
Article in English | MEDLINE | ID: mdl-11018963

ABSTRACT

Thomson scattering measurements are presented which demonstrate conclusively the occurrence of the Langmuir decay instability (LDI) in a laser-produced plasma experiment. Both products of the instability, the ion acoustic wave and the electron plasma wave, were simultaneously observed and identified with their spectral characteristics. The secondary decay of the LDI-generated electron plasma wave, into another Langmuir wave and an ion acoustic wave, has been observed for the first time. The connection with growth and saturation of the stimulated Raman instability is discussed.

16.
Article in English | MEDLINE | ID: mdl-11046481

ABSTRACT

Thomson self-scattering measurements are performed in a preionized helium gas jet plasma at different locations along the laser propagation direction. A systematic and important variation of the intensity ratio between the blue and the red ion spectral components is observed, depending on whether the location of the probed region is in front of or behind the focal plane. A simple theoretical calculation of Thomson scattering shows that this behavior can be qualitatively understood in terms of a deformation of the electron distribution function due to the return current correlated with the classical thermal heat flux.

17.
Article in English | MEDLINE | ID: mdl-11969699

ABSTRACT

We report on a detailed study of channel formation in the interaction of a nanosecond laser pulse with a He gas jet. A complete set of diagnostics is used in order to characterize the plasma precisely. The evolution of the plasma radius and of the electron density and temperature are measured by Thomson scattering, Schlieren imaging, and Mach-Zehnder interferometry. In gas jets, one observes the formation of a channel with a deep density depletion on axis. Because of ionization-induced defocusing which increases the size of the focal spot and decreases the maximum laser intensity, no channel is observed in the case of a gas-filled chamber. The results obtained in various gas-jet and laser conditions show that the channel radius, as well as the density along the propagation axis, can be adjusted by changing the laser energy and gas-jet pressure. This is a crucial issue when one wants to adapt the channel parameters in order to guide a subsequent high-intensity laser pulse. The experimental results and their comparison with one-dimensional (1D) and two-dimensional hydrodynamic simulations show that the main mechanism for channel formation is the hydrodynamic evolution behind a supersonic electron heat wave propagating radially in the plasma. It is also shown from 2D simulations that a fraction of the long pulse can be self-guided in the channel it creates. The preliminary results and analyses on this subject have been published before [V. Malka et al., Phys. Rev. Lett. 79, 2979 (1997)].

SELECTION OF CITATIONS
SEARCH DETAIL
...