Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38562883

ABSTRACT

Models of speech perception are centered around a hierarchy in which auditory representations in the thalamus propagate to primary auditory cortex, then to the lateral temporal cortex, and finally through dorsal and ventral pathways to sites in the frontal lobe. However, evidence for short latency speech responses and low-level spectrotemporal representations in frontal cortex raises the question of whether speech-evoked activity in frontal cortex strictly reflects downstream processing from lateral temporal cortex or whether there are direct parallel pathways from the thalamus or primary auditory cortex to the frontal lobe that supplement the traditional hierarchical architecture. Here, we used high-density direct cortical recordings, high-resolution diffusion tractography, and hemodynamic functional connectivity to evaluate for evidence of direct parallel inputs to frontal cortex from low-level areas. We found that neural populations in the frontal lobe show speech-evoked responses that are synchronous or occur earlier than responses in the lateral temporal cortex. These short latency frontal lobe neural populations encode spectrotemporal speech content indistinguishable from spectrotemporal encoding patterns observed in the lateral temporal lobe, suggesting parallel auditory speech representations reaching temporal and frontal cortex simultaneously. This is further supported by white matter tractography and functional connectivity patterns that connect the auditory nucleus of the thalamus (medial geniculate body) and the primary auditory cortex to the frontal lobe. Together, these results support the existence of a robust pathway of parallel inputs from low-level auditory areas to frontal lobe targets and illustrate long-range parallel architecture that works alongside the classical hierarchical speech network model.

2.
Lancet Neurol ; 23(1): 19-20, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101887
3.
Ann Neurol ; 94(6): 1086-1101, 2023 12.
Article in English | MEDLINE | ID: mdl-37632288

ABSTRACT

OBJECTIVE: Co-occurring anti-tripartite motif-containing protein 9 and 67 autoantibodies (TRIM9/67-IgG) have been reported in only a very few cases of paraneoplastic cerebellar syndrome. The value of these biomarkers and the most sensitive methods of TRIM9/67-IgG detection are not known. METHODS: We performed a retrospective, multicenter study to evaluate the cerebrospinal fluid and serum of candidate TRIM9/67-IgG cases by tissue-based immunofluorescence, peptide phage display immunoprecipitation sequencing, overexpression cell-based assay (CBA), and immunoblot. Cases in which TRIM9/67-IgG was detected by at least 2 assays were considered TRIM9/67-IgG positive. RESULTS: Among these cases (n = 13), CBA was the most sensitive (100%) and revealed that all cases had TRIM9 and TRIM67 autoantibodies. Of TRIM9/67-IgG cases with available clinical history, a subacute cerebellar syndrome was the most common presentation (n = 7/10), followed by encephalitis (n = 3/10). Of these 10 patients, 70% had comorbid cancer (7/10), 85% of whom (n = 6/7) had confirmed metastatic disease. All evaluable cancer biopsies expressed TRIM9 protein (n = 5/5), whose expression was elevated in the cancerous regions of the tissue in 4 of 5 cases. INTERPRETATION: TRIM9/67-IgG is a rare but likely high-risk paraneoplastic biomarker for which CBA appears to be the most sensitive diagnostic assay. ANN NEUROL 2023;94:1086-1101.


Subject(s)
Nerve Tissue Proteins , Paraneoplastic Cerebellar Degeneration , Humans , Retrospective Studies , Nerve Tissue Proteins/metabolism , Biomarkers/cerebrospinal fluid , Autoantibodies/cerebrospinal fluid , Immunoglobulin G
4.
J Neurosurg Case Lessons ; 5(13)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37014023

ABSTRACT

BACKGROUND: Apraxia of speech is a disorder of speech-motor planning in which articulation is effortful and error-prone despite normal strength of the articulators. Phonological alexia and agraphia are disorders of reading and writing disproportionately affecting unfamiliar words. These disorders are almost always accompanied by aphasia. OBSERVATIONS: A 36-year-old woman underwent resection of a grade IV astrocytoma based in the left middle precentral gyrus, including a cortical site associated with speech arrest during electrocortical stimulation mapping. Following surgery, she exhibited moderate apraxia of speech and difficulty with reading and spelling, both of which improved but persisted 6 months after surgery. A battery of speech and language assessments was administered, revealing preserved comprehension, naming, cognition, and orofacial praxis, with largely isolated deficits in speech-motor planning and the spelling and reading of nonwords. LESSONS: This case describes a specific constellation of speech-motor and written language symptoms-apraxia of speech, phonological agraphia, and phonological alexia in the absence of aphasia-which the authors theorize may be attributable to disruption of a single process of "motor-phonological sequencing." The middle precentral gyrus may play an important role in the planning of motorically complex phonological sequences for production, independent of output modality.

5.
J Neurosurg Case Lessons ; 4(22)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36443954

ABSTRACT

BACKGROUND: In classic speech network models, the primary auditory cortex is the source of auditory input to Wernicke's area in the posterior superior temporal gyrus (pSTG). Because resection of the primary auditory cortex in the dominant hemisphere removes inputs to the pSTG, there is a risk of speech impairment. However, recent research has shown the existence of other, nonprimary auditory cortex inputs to the pSTG, potentially reducing the risk of primary auditory cortex resection in the dominant hemisphere. OBSERVATIONS: Here, the authors present a clinical case of a woman with severe medically refractory epilepsy with a lesional epileptic focus in the left (dominant) Heschl's gyrus. Analysis of neural responses to speech stimuli was consistent with primary auditory cortex localization to Heschl's gyrus. Although the primary auditory cortex was within the proposed resection margins, she underwent lesionectomy with total resection of Heschl's gyrus. Postoperatively, she had no speech deficits and her seizures were fully controlled. LESSONS: While resection of the dominant hemisphere Heschl's gyrus/primary auditory cortex warrants caution, this case illustrates the ability to resect the primary auditory cortex without speech impairment and supports recent models of multiple parallel inputs to the pSTG.

6.
Cell Rep ; 30(13): 4445-4458.e5, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32234479

ABSTRACT

During critical periods, neural circuits develop to form receptive fields that adapt to the sensory environment and enable optimal performance of relevant tasks. We hypothesized that early exposure to background noise can improve signal-in-noise processing, and the resulting receptive field plasticity in the primary auditory cortex can reveal functional principles guiding that important task. We raised rat pups in different spectro-temporal noise statistics during their auditory critical period. As adults, they showed enhanced behavioral performance in detecting vocalizations in noise. Concomitantly, encoding of vocalizations in noise in the primary auditory cortex improves with noise-rearing. Significantly, spectro-temporal modulation plasticity shifts cortical preferences away from the exposed noise statistics, thus reducing noise interference with the foreground sound representation. Auditory cortical plasticity shapes receptive field preferences to optimally extract foreground information in noisy environments during noise-rearing. Early noise exposure induces cortical circuits to implement efficient coding in the joint spectral and temporal modulation domain.


Subject(s)
Auditory Cortex/physiology , Environment , Neuronal Plasticity/physiology , Noise , Acoustic Stimulation , Animals , Female , Neurons/physiology , Rats, Sprague-Dawley , Time Factors , Vocalization, Animal/physiology
7.
J Neurosci ; 36(6): 2014-26, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26865624

ABSTRACT

The human superior temporal gyrus (STG) is critical for speech perception, yet the organization of spectrotemporal processing of speech within the STG is not well understood. Here, to characterize the spatial organization of spectrotemporal processing of speech across human STG, we use high-density cortical surface field potential recordings while participants listened to natural continuous speech. While synthetic broad-band stimuli did not yield sustained activation of the STG, spectrotemporal receptive fields could be reconstructed from vigorous responses to speech stimuli. We find that the human STG displays a robust anterior-posterior spatial distribution of spectrotemporal tuning in which the posterior STG is tuned for temporally fast varying speech sounds that have relatively constant energy across the frequency axis (low spectral modulation) while the anterior STG is tuned for temporally slow varying speech sounds that have a high degree of spectral variation across the frequency axis (high spectral modulation). This work illustrates organization of spectrotemporal processing in the human STG, and illuminates processing of ethologically relevant speech signals in a region of the brain specialized for speech perception. SIGNIFICANCE STATEMENT: Considerable evidence has implicated the human superior temporal gyrus (STG) in speech processing. However, the gross organization of spectrotemporal processing of speech within the STG is not well characterized. Here we use natural speech stimuli and advanced receptive field characterization methods to show that spectrotemporal features within speech are well organized along the posterior-to-anterior axis of the human STG. These findings demonstrate robust functional organization based on spectrotemporal modulation content, and illustrate that much of the encoded information in the STG represents the physical acoustic properties of speech stimuli.


Subject(s)
Speech Perception/physiology , Temporal Lobe/physiology , Acoustic Stimulation , Adult , Algorithms , Brain Mapping , Energy Metabolism/physiology , Evoked Potentials/physiology , Female , Humans , Male , Phonetics
SELECTION OF CITATIONS
SEARCH DETAIL
...