Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Energy Convers Manag ; 244: None, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34538999

ABSTRACT

In this study, stack design for high concentration gradient reverse electrodialysis operating in recycle is addressed. High concentration gradients introduce complex transport phenomena, which are exacerbated when recycling feeds; a strategy employed to improve system level energy efficiency. This unique challenge indicates that membrane properties and spacer thickness requirements may differ considerably from reverse electrodialysis for lower concentration gradients (e.g. seawater/river water), drawing closer parallels to electrodialysis stack design. Consequently, commercially available electrodialysis and reverse electrodialysis stack design was first compared for power generation from high concentration gradients. Higher gross power densities were identified for the reverse electrodialysis stack, due to the use of thinner membranes characterised by a higher permselectivity, which improved current. However, energy efficiency of the electrodialysis stack was twice that recorded for the reverse electrodialysis stack at low current densities, which was attributed to: (i) an increased residence time provided by the larger intermembrane distance, and (ii) reduced exergy losses of the electrodialysis membranes, which provided comparatively lower water permeance. Further in-depth investigation into membrane properties and spacer thickness identified that membranes characterised by an intermediate water permeability and ohmic resistance provided the highest power density and energy efficiency (Neosepta ACS/CMS), while wider intermembrane distances up to 0.3 mm improved energy efficiency. This study confirms that reverse electrodialysis stacks for high concentration gradients in recycle therefore demand design more comparable to electrodialysis stacks to drive energy efficiency, but when selecting membrane properties, the trade-off with permselectivity must also be considered to ensure economic viability.

2.
J Memb Sci ; 627: 119245, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34083864

ABSTRACT

Whilst reverse electrodialysis (RED) has been extensively characterised for saline gradient energy from seawater/river water (0.5 M/0.02 M), less is known about RED stack design for high concentration salinity gradients (4 M/0.02 M), important to closed loop applications (e.g. thermal-to-electrical, energy storage). This study therefore focuses on the scale-up of RED stacks for high concentration salinity gradients. Higher velocities were required to attain a maximum Open Circuit Voltage (OCV) for 4 M/0.02 M, which gives a measure of the electrochemical potential of the cell. The experimental OCV was also much below the theoretical OCV, due to the greater boundary layer resistance observed, which is distinct from 0.5 M/0.02 M. However, negative net power density (net produced electrical power divided by total membrane area) was demonstrated with 0.5 M/0.02 M for larger stacks using shorter residence times (three stack sizes tested: 10 × 10cm, 10 × 20cm and 10 × 40cm). In contrast, the highest net power density was observed at the shortest residence time for the 4 M/0.02 M concentration gradient, as the increased ionic flux compensated for the pressure drop. Whilst comparable net power densities were determined for the 10 × 10cm and 10 × 40cm stacks using the 4 M/0.02 M concentration gradient, the osmotic and ionic transport mechanisms are distinct. Increasing cell pair number improved maximum current density. This subsequently increased power density, due to the reduction in boundary layer resistance, and may therefore be used to improve thermodynamic efficiency and power density from RED for high concentrations. Although comparable power densities may be achieved for small and large stacks, large stacks maybe preferred for high concentration salinity gradients due to the comparative benefit in thermodynamic efficiency in single pass. The greater current achieved by large stacks may also be complemented by an increase in cell pair number and current density optimisation to increase power density and reduce exergy losses.

3.
Desalination ; 496: 114711, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33335330

ABSTRACT

Whilst the efficiency of reverse electrodialysis (RED) for thermal-to-electrical conversion has been theoretically demonstrated for low-grade waste heat, the specific configuration and salinity required to manage power generation has been less well described. This study demonstrates that operating RED by recycling feed solutions provides the most suitable configuration for energy recovery from a fixed solution volume, providing a minimum unitary cost for energy production. For a fixed membrane area, recycling feeds achieves energy efficiency seven times higher than single pass (conventional operation), and with an improved power density. However, ionic transport, water flux and concentration polarisation introduce complex temporal effects when concentrated brines are recirculated, that are not ordinarily encountered in single pass systems. Regeneration of the concentration gradient at around 80% energy dissipation was deemed most economically pragmatic, due to the increased resistance to mass transport beyond this threshold. However, this leads to significant exergy destruction that could be improved by interventions to better control ionic build up in the dilute feed. Further improvements to energy efficiency were fostered through optimising current density for each brine concentration independently. Whilst energy efficiency was greatest at lower brine concentrations, the work produced from a fixed volume of feed solution was greatest at higher saline concentrations. Since the thermal-to-electrical conversion proposed is governed by volumetric heat utilisation (distillation to reset the concentration gradient), higher brine concentrations are therefore recommended to improve total system efficiency. Importantly, this study provides new evidence for the configuration and boundary conditions required to realise RED as a practical solution for application to sources of low-grade waste heat in industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...