Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(12): e32680, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975076

ABSTRACT

Repressor element-1 silencing transcription factor (REST) is a transcriptional repressor involved in neurodevelopment and neuroprotection. REST forms a complex with the REST corepressors, CoREST1, CoREST2, or CoREST3 (encoded by RCOR1, RCOR2, and RCOR3, respectively). Emerging evidence suggests that the CoREST family can target unique genes independently of REST, in various neural and glial cell types during different developmental stages. However, there is limited knowledge regarding the expression and function of the CoREST family in human neurodevelopment. To address this gap, we employed 2D and 3D human pluripotent stem cell (hPSC) models to investigate REST and RCOR gene expression levels. Our study revealed a significant increase in RCOR3 expression in glutamatergic cortical and GABAergic ventral forebrain neurons, as well as mature functional NGN2-induced neurons. Additionally, a simplified astrocyte transdifferentiation protocol resulted in a significant decrease in RCOR2 expression following differentiation. REST expression was notably reduced in mature neurons and cerebral organoids. In summary, our findings provide the first insights into the cell-type-specific expression patterns of RCOR genes in human neuronal and glial differentiation. Specifically, RCOR3 expression increases in neurons, while RCOR2 levels decrease in astrocytes. The dynamic expression patterns of REST and RCOR genes during hPSC neuronal and glial differentiation underscore the potential distinct roles played by REST and CoREST proteins in regulating the development of these cell types in humans.

2.
Science ; 383(6686): 992-998, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422143

ABSTRACT

Touch perception is enabled by mechanically activated ion channels, the opening of which excites cutaneous sensory endings to initiate sensation. In this study, we identify ELKIN1 as an ion channel likely gated by mechanical force, necessary for normal touch sensitivity in mice. Touch insensitivity in Elkin1-/- mice was caused by a loss of mechanically activated currents (MA currents) in around half of all sensory neurons activated by light touch (low-threshold mechanoreceptors). Reintroduction of Elkin1 into sensory neurons from Elkin1-/- mice restored MA currents. Additionally, small interfering RNA-mediated knockdown of ELKIN1 from induced human sensory neurons substantially reduced indentation-induced MA currents, supporting a conserved role for ELKIN1 in human touch. Our data identify ELKIN1 as a core component of touch transduction in mice and potentially in humans.


Subject(s)
Ion Channels , Mechanoreceptors , Mechanotransduction, Cellular , Membrane Proteins , Sensory Receptor Cells , Touch Perception , Animals , Humans , Mice , HEK293 Cells , Ion Channels/genetics , Ion Channels/physiology , Mechanoreceptors/physiology , Mechanotransduction, Cellular/genetics , Mechanotransduction, Cellular/physiology , Membrane Proteins/genetics , Membrane Proteins/physiology , RNA, Small Interfering , Touch , Mice, Mutant Strains , Male , Female
3.
Stem Cell Reports ; 17(1): 14-34, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34971564

ABSTRACT

Directed neuronal differentiation of human pluripotent stem cells (hPSCs), neural progenitors, or fibroblasts using transcription factors has allowed for the rapid and highly reproducible differentiation of mature and functional neurons. Exogenous expression of the transcription factor Neurogenin-2 (NGN2) has been widely used to generate different populations of neurons, which have been used in neurodevelopment studies, disease modeling, drug screening, and neuronal replacement therapies. Could NGN2 be a "one-glove-fits-all" approach for neuronal differentiations? This review summarizes the cellular roles of NGN2 and describes the applications and limitations of using NGN2 for the rapid and directed differentiation of neurons.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation , Nerve Tissue Proteins/genetics , Neurons/cytology , Neurons/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers , Cell Culture Techniques , Cell Differentiation/genetics , Cell Lineage/genetics , Cell- and Tissue-Based Therapy , Gene Expression Regulation , High-Throughput Screening Assays , Humans , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism
4.
Viruses ; 13(8)2021 08 13.
Article in English | MEDLINE | ID: mdl-34452469

ABSTRACT

Capsid uncoating is at the crossroads of early steps in HIV-1 replication. In recent years, the development of novel assays has expanded how HIV-1 uncoating can be studied. In the in situ uncoating assay, dual fluorescently labelled virus allows for the identification of fused viral cores. Antibody staining then detects the amount of capsid associated with each viral core at different times post-infection. Following fixed cell imaging, manual counting can be used to assess the fusion state and capsid signal for each viral core, but this method can introduce bias with increased time of analysis. To address these limitations, we developed the Overlap Intensity macro in ImageJ. This macro automates the detection of viral cores and quantification of overlapping fusion and capsid signals. We demonstrated the high accuracy of the macro by comparing core detection to manual methods. Analysis of an in situ uncoating assay further verified the macro by detecting progressive uncoating as expected. Therefore, this macro improves the accessibility of the in situ uncoating assay by replacing time-consuming manual methods or the need for expensive data analysis software. Beyond the described assay, the Overlap Intensity macro includes adjustable settings for use in other methods requiring quantification of overlapping fluorescent signals.


Subject(s)
HIV-1/physiology , HIV-1/ultrastructure , Image Processing, Computer-Assisted/methods , Virus Uncoating , Capsid/ultrastructure , HEK293 Cells , Humans , Microscopy, Fluorescence/methods , Virus Replication
5.
Mol Oncol ; 15(4): 1162-1179, 2021 04.
Article in English | MEDLINE | ID: mdl-33497018

ABSTRACT

Approximately 25% of human neuroblastoma is caused by amplification of the MYCN oncogene, which leads to overexpression of N-Myc oncoprotein. The survival rate for this patient subtype is <50%. Here, we show that N-Myc protein bound to the DEAD-box RNA helicase DDX21 gene promoter and upregulated DDX21 mRNA and protein expression. Genome-wide differential gene expression studies identified centrosomal protein CEP55 as one of the genes most dramatically downregulated after DDX21 knockdown in MYCN-amplified neuroblastoma cells. Knocking down DDX21 or CEP55 reduced neuroblastoma cell cytoskeleton stability and cell proliferation and all but abolished clonogenic capacity. Importantly, DDX21 knockdown initially induced tumor regression in neuroblastoma-bearing mice and suppressed tumor progression. In human neuroblastoma tissues, a high level of DDX21 expression correlated with a high level of N-Myc expression and with CEP55 expression, and independently predicted poor patient prognosis. Taken together, our data show that DDX21 induces CEP55 expression, MYCN-amplified neuroblastoma cell proliferation, and tumorigenesis, and that DDX21 and CEP55 are valid therapeutic targets for the treatment of MYCN-amplified neuroblastoma.


Subject(s)
Cell Cycle Proteins/genetics , DEAD-box RNA Helicases/genetics , Neuroblastoma/genetics , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred BALB C , Mice, Nude , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/pathology , Promoter Regions, Genetic
6.
Front Cell Neurosci ; 14: 600895, 2020.
Article in English | MEDLINE | ID: mdl-33362470

ABSTRACT

Sensory perception is fundamental to everyday life, yet understanding of human sensory physiology at the molecular level is hindered due to constraints on tissue availability. Emerging strategies to study and characterize peripheral neuropathies in vitro involve the use of human pluripotent stem cells (hPSCs) differentiated into dorsal root ganglion (DRG) sensory neurons. However, neuronal functionality and maturity are limited and underexplored. A recent and promising approach for directing hPSC differentiation towards functionally mature neurons involves the exogenous expression of Neurogenin-2 (NGN2). The optimized protocol described here generates sensory neurons from hPSC-derived neural crest (NC) progenitors through virally induced NGN2 expression. NC cells were derived from hPSCs via a small molecule inhibitor approach and enriched for migrating NC cells (66% SOX10+ cells). At the protein and transcript level, the resulting NGN2 induced sensory neurons (NGN2iSNs) express sensory neuron markers such as BRN3A (82% BRN3A+ cells), ISLET1 (91% ISLET1+ cells), TRKA, TRKB, and TRKC. Importantly, NGN2iSNs repetitively fire action potentials (APs) supported by voltage-gated sodium, potassium, and calcium conductances. In-depth analysis of the molecular basis of NGN2iSN excitability revealed functional expression of ion channels associated with the excitability of primary afferent neurons, such as Nav1.7, Nav1.8, Kv1.2, Kv2.1, BK, Cav2.1, Cav2.2, Cav3.2, ASICs and HCN among other ion channels, for which we provide functional and transcriptional evidence. Our characterization of stem cell-derived sensory neurons sheds light on the molecular basis of human sensory physiology and highlights the suitability of using hPSC-derived sensory neurons for modeling human DRG development and their potential in the study of human peripheral neuropathies and drug therapies.

7.
Biomater Sci ; 8(9): 2398-2403, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32270790

ABSTRACT

Increasing frataxin protein levels through gene therapy is envisaged to improve therapeutic outcomes for patients with Friedreich's ataxia (FRDA). A non-viral strategy that uses submicrometer-sized multilayered particles to deliver frataxin-encoding plasmid DNA affords up to 27 000-fold increase in frataxin gene expression within 2 days in vitro in a stem cell-derived neuronal model of FRDA.


Subject(s)
DNA/administration & dosage , Friedreich Ataxia , Iron-Binding Proteins/genetics , Models, Biological , Plasmids , Sensory Receptor Cells/metabolism , Cell Line, Tumor , Humans , Induced Pluripotent Stem Cells/cytology , Frataxin
8.
Virol J ; 17(1): 31, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32143686

ABSTRACT

BACKGROUND: After viral fusion with the cell membrane, the conical capsid of HIV-1 disassembles by a process called uncoating. Previously we have utilized the CsA washout assay, in which TRIM-CypA mediated restriction of viral replication is used to detect the state of the viral capsid, to study the kinetics of HIV-1 uncoating in owl monkey kidney (OMK) and HeLa cells. Here we have extended this analysis to the human microglial cell lines CHME3 and C20 to characterize uncoating in a cell type that is a natural target of HIV infection. METHODS: The CsA washout was used to characterize uncoating of wildtype and capsid mutant viruses in CHME3 and C20 cells. Viral fusion assays and nevirapine addition assays were performed to relate the kinetics of viral fusion and reverse transcription to uncoating. RESULTS: We found that uncoating initiated within the first hour after viral fusion and was facilitated by reverse transcription in CHME3 and C20 cells. The capsid mutation A92E did not significantly alter uncoating kinetics. Viruses with capsid mutations N74D and E45A decreased the rate of uncoating in CHME3 cells, but did not alter reverse transcription. Interestingly, the second site suppressor capsid mutation R132T was able to rescue the uncoating kinetics of the E45A mutation, despite having a hyperstable capsid. CONCLUSIONS: These results are most similar to previously observed characteristics of uncoating in HeLa cells and support the model in which uncoating is initiated by early steps of reverse transcription in the cytoplasm. A comparison of the uncoating kinetics of CA mutant viruses in OMK and CHME3 cells reveals the importance of cellular factors in the process of uncoating. The E45A/R132T mutant virus specifically suggests that disrupted interactions with cellular factors, rather than capsid stability, is responsible for the delayed uncoating kinetics seen in E45A mutant virus. Future studies aimed at identifying these factors will be important for understanding the process of uncoating and the development of interventions to disrupt this process.


Subject(s)
HIV-1/physiology , Microglia/virology , Virus Uncoating , Animals , Capsid/metabolism , Capsid Proteins/genetics , Cell Line , HIV-1/genetics , Humans , Kinetics , Mutation , Virus Replication
9.
Nat Commun ; 10(1): 5026, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31690716

ABSTRACT

The majority of patients with neuroblastoma due to MYCN oncogene amplification and consequent N-Myc oncoprotein over-expression die of the disease. Here our analyses of RNA sequencing data identify the long noncoding RNA lncNB1 as one of the transcripts most over-expressed in MYCN-amplified, compared with MYCN-non-amplified, human neuroblastoma cells and also the most over-expressed in neuroblastoma compared with all other cancers. lncNB1 binds to the ribosomal protein RPL35 to enhance E2F1 protein synthesis, leading to DEPDC1B gene transcription. The GTPase-activating protein DEPDC1B induces ERK protein phosphorylation and N-Myc protein stabilization. Importantly, lncNB1 knockdown abolishes neuroblastoma cell clonogenic capacity in vitro and leads to neuroblastoma tumor regression in mice, while high levels of lncNB1 and RPL35 in human neuroblastoma tissues predict poor patient prognosis. This study therefore identifies lncNB1 and its binding protein RPL35 as key factors for promoting E2F1 protein synthesis, N-Myc protein stability and N-Myc-driven oncogenesis, and as therapeutic targets.


Subject(s)
Carcinogenesis/genetics , RNA, Long Noncoding/metabolism , Ribosomal Proteins/metabolism , Animals , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , E2F1 Transcription Factor/metabolism , Female , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred BALB C , Mice, Nude , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Prognosis , Protein Biosynthesis , Protein Stability , RNA, Long Noncoding/genetics , Transcription, Genetic , Up-Regulation/genetics
10.
J Neurochem ; 149(4): 535-550, 2019 05.
Article in English | MEDLINE | ID: mdl-30592774

ABSTRACT

Targeting epigenetic mechanisms has shown promise against several cancers but has so far been unsuccessful against glioblastoma (GBM). Altered histone 3 lysine 4 methylation and increased lysine-specific histone demethylase 1A (LSD1) expression in GBM tumours nonetheless suggest that epigenetic mechanisms are involved in GBM. We engineered a dual-action prodrug, which is activated by the high hydrogen peroxide levels associated with GBM cells. This quinone methide phenylaminecyclopropane prodrug releases the LSD1 inhibitor 2-phenylcyclopropylamine with the glutathione scavenger para-quinone methide to trigger apoptosis in GBM cells. Quinone methide phenylaminocyclopropane impaired GBM cell behaviours in two-dimensional and three-dimensional assays, and triggered cell apoptosis in several primary and immortal GBM cell cultures. These results support our double-hit hypothesis of potentially targeting LSD1 and quenching glutathione, in order to impair and kill GBM cells but not healthy astrocytes. Our data suggest this strategy is effective at selectively targeting GBM and potentially other types of cancers. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Brain Neoplasms/pathology , Glioblastoma/pathology , Prodrugs/pharmacology , Aniline Compounds/pharmacology , Cells, Cultured , Cyclopropanes/pharmacology , Drug Design , Glutathione/antagonists & inhibitors , Histone Demethylases/antagonists & inhibitors , Humans , Indolequinones/pharmacology
11.
PLoS One ; 10(3): e0121199, 2015.
Article in English | MEDLINE | ID: mdl-25803716

ABSTRACT

Uncoating of Human Immunodeficiency Virus type 1 (HIV-1) and type 2 (HIV-2) conical cores is an important early step for establishment of infection. In Old World Monkey (OWM) cells, the TRIM5α cellular factor potently suppresses an early step of infection by HIV-1. Previously, biochemical studies using whole cell lysates of infected cells revealed that OWM TRIM5α accelerates the uncoating of HIV-1, leading to premature reverse transcription. In the present study, we re-evaluated uncoating kinetics of HIV-1 in the presence of OWM TRIM5α by using an in situ uncoating assay, which allowed us to differentiate productive HIV-1 entry from simple (non-productive) endocytosis. Results showed that the uncoating kinetics of HIV-1 was indeed accelerated in the presence of OWM TRIM5α. Furthermore, we adapted an in situ uncoating assay to HIV-2, which showed wide variations in TRIM5α sensitivity among different isolates. HIV-2 isolate GH123, whose infectivity was suppressed by cynomolgus monkey (CM) TRIM5α, showed accelerated uncoating in the presence of CM TRIM5α. In contrast, mutant HIV-2 ASA, whose infectivity was unaltered by CM TRIM5α, showed no change in uncoating kinetics in the presence of CM TRIM5α. These results confirmed and further extended the previous notion that accelerated uncoating is associated with restriction activity of TRIM5α against lentiviruses.


Subject(s)
Cercopithecidae/metabolism , Cercopithecidae/virology , HIV-1/physiology , HIV-2/physiology , Proteins/metabolism , Virus Uncoating/physiology , Animals , Antiviral Restriction Factors , Carrier Proteins/metabolism , Cell Line, Transformed , Chlorocebus aethiops , HeLa Cells , Humans , Kinetics , Macaca fascicularis , Optical Imaging/methods , Proteins/pharmacology , Simian Immunodeficiency Virus/physiology , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Virus Uncoating/drug effects
12.
J Virol ; 89(10): 5350-61, 2015 May.
Article in English | MEDLINE | ID: mdl-25741002

ABSTRACT

UNLABELLED: During uncoating, the conical capsid of HIV disassembles by dissociation of the p24 capsid protein (CA). Uncoating is known to be required for HIV replication, but the mechanism is poorly defined. Here, we examined the timing and effect of two capsid binding drugs (PF74 and BI2) on infectivity and capsid integrity in HIV-1-infected cells. The virus remained susceptible to the action of PF74 and BI2 for hours after uncoating as defined in parallel drug addition and cyclosporine (CsA) washout assays to detect the kinetics of drug susceptibility and uncoating, respectively. Resistance mutations in CA decreased the potency of these compounds, demonstrating that CA is the target of drug action. However, neither drug altered capsid integrity in a fluorescence microscopy-based assay. These data suggest that PF74 and BI2 do not alter HIV-1 uncoating but rather affect a later step in viral replication. Because both drugs bind CA, we hypothesized that a residual amount of CA associates with the viral complex after the loss of the conical capsid to serve as a target for these drugs. Superresolution structured illumination microscopy (SIM) revealed that CA localized to viral complexes in the nuclei of infected cells. Using image quantification, we determined that viral complexes localized in the nucleus displayed a smaller amount of CA than complexes at the nuclear membrane, in the cytoplasm, or in controls. Collectively, these data suggest that a subset of CA remains associated with the viral complex after uncoating and that this residual CA is the target of PF74 and BI2. IMPORTANCE: The HIV-1 capsid is a target of interest for new antiviral therapies. This conical capsid is composed of monomers of the viral CA protein. During HIV-1 replication, the capsid must disassemble by a poorly defined process called uncoating. CA has also been implicated in later steps of replication, including nuclear import and integration. In this study, we used cell-based assays to examine the effect of two CA binding drugs (PF74 and BI2) on viral replication in infected cells. HIV-1 was susceptible to both drugs for hours after uncoating, suggesting that these drugs affect later steps of viral replication. High-resolution structured illumination microscopy (SIM) revealed that a subset of CA localized to viral complexes in the nuclei of cells. Collectively, these data suggest that a subset of CA remains associated with the viral complex after uncoating, which may facilitate later steps of viral replication and serve as a drug target.


Subject(s)
HIV Core Protein p24/physiology , HIV-1/physiology , Virus Uncoating/physiology , Anti-HIV Agents/pharmacology , Capsid/drug effects , Capsid/physiology , Cell Line , Cell Nucleus/virology , HEK293 Cells , HIV Infections/virology , HIV-1/drug effects , HeLa Cells , Humans , Indoles/pharmacology , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Virus Replication/drug effects , Virus Replication/physiology , Virus Uncoating/drug effects
13.
J Virol ; 89(1): 643-51, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25339776

ABSTRACT

UNLABELLED: After viral fusion with the cell membrane, the conical capsid of HIV-1 disassembles by a process called uncoating. We recently utilized the cyclosporine (CsA) washout assay, in which TRIM-CypA-mediated restriction of viral replication is used to detect the state of the viral capsid, to study the kinetics of uncoating in HIV-1-infected cells. Here we have extended this analysis to examine the effects of p24 capsid protein (p24(CA)) mutations and cellular environment on the kinetics of uncoating in infected cells. We found that p24(CA) mutations can significantly increase (A92E), delay (E45A and N74D), or have no effect (G94D) on the rate of uncoating and that these alterations are not due to changes in reverse transcription. Inhibition of reverse transcription delayed uncoating kinetics to an extent similar to that of the wild-type virus with all the p24(CA) mutant viruses tested. In addition, we observed differences in uncoating in two cell lines, which suggests that the cellular environment can differentially impact the disassembly of wild-type and mutant capsids. Collectively, these experiments suggest that viral and cellular factors are important for the process of uncoating. Finally, these data support the model whereby early steps in reverse transcription facilitate HIV-1 uncoating. IMPORTANCE: The HIV-1 capsid is a cone-shaped structure, composed of the HIV-1-encoded protein p24(CA), which contains the viral RNA and other proteins needed for infection. After the virus enters a target cell, this capsid must disassemble by a process called uncoating. Uncoating is required for HIV-1 infection to progress, but the details of how this process occurs is not known. In this study, we used an in vivo assay to examine the uncoating process in HIV-1-infected cells. We determined that p24(CA) mutations could increase or decrease the rate of uncoating and that this rate varied in different cell lines. We also found that reverse transcription of the viral RNA altered the process of uncoating before the p24(CA) mutations. Collectively, these experiments provide a better understanding of how viral and cellular factors are involved with a poorly understood step in HIV-1 infection.


Subject(s)
HIV Core Protein p24/metabolism , HIV-1/physiology , Mutant Proteins/metabolism , Virus Uncoating , Amino Acid Substitution , Cells, Cultured , HIV Core Protein p24/genetics , HIV-1/genetics , HIV-1/isolation & purification , Host-Pathogen Interactions , Humans , Mutant Proteins/genetics , Mutation, Missense
14.
Methods Mol Biol ; 1087: 37-46, 2014.
Article in English | MEDLINE | ID: mdl-24158812

ABSTRACT

Uncoating is an early step of HIV-1 replication in which the viral capsid disassembles by p24 capsid (p24(CA)) protein dissociating from the viral complex. Although uncoating is required for HIV-1 replication, many questions remain about the mechanism of this process as well as its impact on other steps in viral replication. Here we describe a recently developed assay to study the process of uncoating in HIV-1-infected cells. The CsA washout assay is a cell-based assay that utilizes the HIV-1 restriction factor TRIM-CypA to detect and inhibit infection of coated viral complexes. Owl monkey kidney (OMK) cells are infected with a GFP reporter virus and TRIM-CypA restriction is switched on at various times postinfection allowing the kinetics of uncoating to be monitored in infected cells. This assay also can be used to examine the effect of different viral or cellular factors on the process of uncoating.


Subject(s)
Cyclosporine/metabolism , HIV-1/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cyclosporine/pharmacology , HEK293 Cells , HIV-1/drug effects , Humans , Membrane Proteins/metabolism , Virus Replication
15.
Annu Rev Virol ; 1(1): 501-15, 2014 Nov.
Article in English | MEDLINE | ID: mdl-26958731

ABSTRACT

Cellular entry of retroviruses is the first critical stage of retroviral replication. Live cell imaging has been utilized to visualize the dynamics, localization, and kinetics of the viral fusion process. Here, we review the different methodologies used for live cell imaging and how the use of these techniques has better elucidated the viral entry process of avian sarcoma and leukosis virus (ASLV) and human immunodeficiency virus type 1 (HIV-1) as well as cell-to-cell transmission of retroviruses. Although some controversies remain, further development of these techniques will provide new insights into the process and dynamics of retroviral fusion in vivo.

16.
PLoS One ; 8(8): e72531, 2013.
Article in English | MEDLINE | ID: mdl-23967315

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) productively infects only humans and chimpanzees, but not Old World monkeys, such as rhesus and cynomolgus (CM) monkeys. To establish a monkey model of HIV-1/AIDS, several HIV-1 derivatives have been constructed. We previously generated a simian-tropic HIV-1 that replicates efficiently in CM cells. This virus encodes a capsid protein (CA) with SIVmac239-derived loops between α-helices 4 and 5 (L4/5) and between α-helices 6 and 7 (L6/7), along with the entire vif from SIVmac239 (NL-4/5S6/7SvifS). These SIVmac239-derived sequences were expected to protect the virus from HIV-1 restriction factors in monkey cells. However, the replicative capability of NL-4/5S6/7SvifS in human cells was severely impaired. By long-term cultivation of human CEM-SS cells infected with NL-4/5S6/7SvifS, we succeeded in partially rescuing the impaired replicative capability of the virus in human cells. This adapted virus encoded a G-to-E substitution at the 116(th) position of the CA (NL-4/5SG116E6/7SvifS). In the work described here, we explored the mechanism by which the replicative capability of NL-4/5S6/7SvifS was impaired in human cells. Quantitative analysis (by real-time PCR) of viral DNA synthesis from infected cells revealed that NL-4/5S6/7SvifS had a major defect in nuclear entry. Mutations in CA are known to affect viral core stability and result in deleterious effects in HIV-1 infection; therefore, we measured the kinetics of uncoating of these viruses. The uncoating of NL-4/5S6/7SvifS was significantly slower than that of wild type HIV-1 (WT), whereas the uncoating of NL-4/5SG116E6/7SvifS was similar to that of WT. Our results suggested that the lower replicative capability of NL-4/5S6/7SvifS in human cells was, at least in part, due to the slower uncoating of this virus.


Subject(s)
HIV-1/physiology , Simian Immunodeficiency Virus/physiology , Virus Replication , Virus Uncoating , Animals , Capsid Proteins/genetics , Cell Line , Gene Order , Genetic Vectors/genetics , HEK293 Cells , HIV Reverse Transcriptase/metabolism , Humans , Mutation , Simian Acquired Immunodeficiency Syndrome/virology , Time Factors
17.
Proc Natl Acad Sci U S A ; 108(24): 9975-80, 2011 Jun 14.
Article in English | MEDLINE | ID: mdl-21628558

ABSTRACT

During the early stages of HIV-1 replication the conical capsid composed of p24(CA) protein dissociates from the rest of the cytoplasmic viral complex by a process called uncoating. Although proper uncoating is known to be required for HIV-1 infection, many questions remain about the timing and factors involved in the process. Here we have used two complementary assays to study the process of uncoating in HIV-1-infected cells, specifically looking at the timing of uncoating and its relationship to reverse transcription. We developed a fluorescent microscopy-based uncoating assay that detects the association of p24(CA) with HIV-1 viral complexes in cells. We also used an owl monkey kidney (OMK) cell assay that is based on timed TRIM-CypA-mediated restriction of HIV-1 replication. Results from both assays indicate that uncoating is initiated within 1 h of viral fusion. In addition, treatment with the reverse transcriptase inhibitor nevirapine delayed uncoating in both assays. Analysis of reverse transcription products in OMK cells revealed that the generation of early reverse transcription products coincides with the timing of uncoating in these assays. Collectively, these results suggest that some aspect of reverse transcription has the ability to influence the kinetics of uncoating.


Subject(s)
HIV-1/genetics , Human Immunodeficiency Virus Proteins/genetics , Reverse Transcription , Virus Replication/genetics , Animals , Anti-HIV Agents/pharmacology , Cell Line , Cyclosporine/pharmacology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , HIV Core Protein p24/genetics , HIV Core Protein p24/metabolism , HIV-1/metabolism , HeLa Cells , Human Immunodeficiency Virus Proteins/metabolism , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Macrolides/pharmacology , Microscopy, Fluorescence , Nevirapine/pharmacology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Time Factors , Virion/genetics , Virion/metabolism , Virus Replication/drug effects , vpr Gene Products, Human Immunodeficiency Virus/genetics , vpr Gene Products, Human Immunodeficiency Virus/metabolism
18.
PLoS Genet ; 6(10)2010 Oct 07.
Article in English | MEDLINE | ID: mdl-20949108

ABSTRACT

The average human genome contains a small cohort of active L1 retrotransposons that encode two proteins (ORF1p and ORF2p) required for their mobility (i.e., retrotransposition). Prior studies demonstrated that human ORF1p, L1 RNA, and an ORF2p-encoded reverse transcriptase activity are present in ribonucleoprotein (RNP) complexes. However, the inability to physically detect ORF2p from engineered human L1 constructs has remained a technical challenge in the field. Here, we have employed an epitope/RNA tagging strategy with engineered human L1 retrotransposons to identify ORF1p, ORF2p, and L1 RNA in a RNP complex. We next used this system to assess how mutations in ORF1p and/or ORF2p impact RNP formation. Importantly, we demonstrate that mutations in the coiled-coil domain and RNA recognition motif of ORF1p, as well as the cysteine-rich domain of ORF2p, reduce the levels of ORF1p and/or ORF2p in L1 RNPs. Finally, we used this tagging strategy to localize the L1-encoded proteins and L1 RNA to cytoplasmic foci that often were associated with stress granules. Thus, we conclude that a precise interplay among ORF1p, ORF2p, and L1 RNA is critical for L1 RNP assembly, function, and L1 retrotransposition.


Subject(s)
Long Interspersed Nucleotide Elements/genetics , Open Reading Frames/genetics , Ribonucleoproteins/genetics , Binding Sites/genetics , Blotting, Western , Cell Line, Tumor , Cytoplasm/metabolism , Gene Expression , HEK293 Cells , HeLa Cells , Humans , In Situ Hybridization, Fluorescence , Mutagenesis, Insertional , Mutation , Plasmids/genetics , RNA/metabolism , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Ribonucleoproteins/metabolism , Transfection
19.
Gene ; 390(1-2): 199-205, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17079095

ABSTRACT

The non-LTR retrotransposon LINE-1 (L1) comprises approximately 17% of the human genome, and the L1-encoded proteins can function in trans to mediate the retrotransposition of non-autonomous retrotransposons (i.e., Alu and probably SVA elements) and cellular mRNAs to generate processed pseudogenes. Here, we have examined the effect of APOBEC3G and APOBEC3F, cytidine deaminases that inhibit Vif-deficient HIV-1 replication, on Alu retrotransposition and other L1-mediated retrotransposition processes. We demonstrate that APOBEC3G selectively inhibits Alu retrotransposition in an ORF1p-independent manner. An active cytidine deaminase site is not required for the inhibition of Alu retrotransposition and the resultant integration events lack G to A or C to T hypermutation. These data demonstrate a differential restriction of L1 and Alu retrotransposition by APOBEC3G, and suggest that the Alu ribonucleoprotein complex may be targeted by APOBEC3G.


Subject(s)
Alu Elements , Nucleoside Deaminases/metabolism , Repressor Proteins/metabolism , APOBEC-3G Deaminase , Base Sequence , Cytidine Deaminase , Cytosine Deaminase/genetics , Cytosine Deaminase/metabolism , DNA/genetics , Humans , Long Interspersed Nucleotide Elements , Nucleoside Deaminases/genetics , Pseudogenes , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Repressor Proteins/genetics , Transfection
20.
Proc Natl Acad Sci U S A ; 103(23): 8780-5, 2006 Jun 06.
Article in English | MEDLINE | ID: mdl-16728505

ABSTRACT

Long interspersed element (LINE) 1 retrotransposons are major genomic parasites that represent approximately 17% of the human genome. The LINE-1 ORF2 protein is also responsible for the mobility of Alu elements, which constitute a further approximately 11% of genomic DNA. Representative members of each element class remain mobile, and deleterious retrotransposition events can induce spontaneous genetic diseases. Here, we demonstrate that APOBEC3A and APOBEC3B, two members of the APOBEC3 family of human innate antiretroviral resistance factors, can enter the nucleus, where LINE-1 and Alu reverse transcription occurs, and specifically inhibit both LINE-1 and Alu retrotransposition. These data suggest that the APOBEC3 protein family may have evolved, at least in part, to defend the integrity of the human genome against endogenous retrotransposons.


Subject(s)
Alu Elements/genetics , DNA Transposable Elements/genetics , Long Interspersed Nucleotide Elements/genetics , APOBEC Deaminases , Cytidine Deaminase , Cytosine Deaminase/genetics , Gene Expression Regulation, Developmental , HeLa Cells , Humans , Mutation/genetics , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...