Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Immunol ; 51(12): 3228-3238, 2021 12.
Article in English | MEDLINE | ID: mdl-34633664

ABSTRACT

The use of bacteria as an alternative cancer therapy has been reinvestigated in recent years. SL7207: an auxotrophic Salmonella enterica serovar Typhimurium aroA mutant with immune-stimulatory potential has proven a promising strain for this purpose. Here, we show that systemic administration of SL7207 induces melanoma tumor growth arrest in vivo, with greater survival of the SL7207-treated group compared to control PBS-treated mice. Administration of SL7207 is accompanied by a change in the immune phenotype of the tumor-infiltrating cells toward pro-inflammatory, with expression of the TH 1 cytokines IFN-γ, TNF-α, and IL-12 significantly increased. Interestingly, Ly6C+ MHCII+ monocytes were recruited to the tumors following SL7207 treatment and were pro-inflammatory. Accordingly, the abrogation of these infiltrating monocytes using clodronate liposomes prevented SL7207-induced tumor growth inhibition. These data demonstrate a previously unappreciated role for infiltrating inflammatory monocytes underlying bacterial-mediated tumor growth inhibition. This information highlights a possible novel role for monocytes in controlling tumor growth, contributing to our understanding of the immune responses required for successful immunotherapy of cancer.


Subject(s)
Immunotherapy , Melanoma, Experimental , Monocytes/immunology , Salmonella typhimurium/immunology , Th1 Cells/immunology , Animals , Cytokines/immunology , Female , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Mice , Salmonella typhimurium/genetics
2.
Cell Rep ; 30(7): 2297-2305.e5, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32075765

ABSTRACT

Propionic acid (PA) is a bacterium-derived intestinal antimicrobial and immune modulator used widely in food production and agriculture. Passage of Crohn's disease-associated adherent-invasive Escherichia coli (AIEC) through a murine model, in which intestinal PA levels are increased to mimic the human intestine, leads to the recovery of AIEC with significantly increased virulence. Similar phenotypic changes are observed outside the murine model when AIEC is grown in culture with PA as the sole carbon source; such PA exposure also results in AIEC that persists at 20-fold higher levels in vivo. RNA sequencing identifies an upregulation of genes involved in biofilm formation, stress response, metabolism, membrane integrity, and alternative carbon source utilization. PA exposure also increases virulence in a number of E. coli isolates from Crohn's disease patients. Removal of PA is sufficient to reverse these phenotypic changes. Our data indicate that exposure to PA results in AIEC resistance and increased virulence in its presence.


Subject(s)
Bacterial Adhesion/genetics , Crohn Disease/microbiology , Escherichia coli Infections/microbiology , Escherichia coli/genetics , Propionates/therapeutic use , Animals , Crohn Disease/therapy , Escherichia coli/pathogenicity , Humans , Mice , Phenotype , Propionates/pharmacology
3.
Sci Rep ; 7(1): 2786, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28584281

ABSTRACT

Salmonella Typhimurium causes a self-limiting gastroenteritis that may lead to systemic disease. Bacteria invade the small intestine, crossing the intestinal epithelium from where they are transported to the mesenteric lymph nodes (MLNs) within migrating immune cells. MLNs are an important site at which the innate and adaptive immune responses converge but their architecture and function is severely disrupted during S. Typhimurium infection. To further understand host-pathogen interactions at this site, we used mass spectrometry imaging (MSI) to analyse MLN tissue from a murine model of S. Typhimurium infection. A molecule, identified as palmitoylcarnitine (PalC), was of particular interest due to its high abundance at loci of S. Typhimurium infection and MLN disruption. High levels of PalC localised to sites within the MLNs where B and T cells were absent and where the perimeter of CD169+ sub capsular sinus macrophages was disrupted. MLN cells cultured ex vivo and treated with PalC had reduced CD4+CD25+ T cells and an increased number of B220+CD19+ B cells. The reduction in CD4+CD25+ T cells was likely due to apoptosis driven by increased caspase-3/7 activity. These data indicate that PalC significantly alters the host response in the MLNs, acting as a decisive factor in infection outcome.


Subject(s)
Immunologic Factors/metabolism , Mass Spectrometry , Palmitoylcarnitine/metabolism , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/metabolism , Salmonella typhimurium/immunology , Animals , Biomarkers , Female , Mice , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...