Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Chem ; 7(1): 133, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862828

ABSTRACT

Molecular representation is critical in chemical machine learning. It governs the complexity of model development and the fulfillment of training data to avoid either over- or under-fitting. As electronic structures and associated attributes are the root cause for molecular interactions and their manifested properties, we have sought to examine the local electron information on a molecular manifold to understand and predict molecular interactions. Our efforts led to the development of a lower-dimensional representation of a molecular manifold, Manifold Embedding of Molecular Surface (MEMS), to embody surface electronic quantities. By treating a molecular surface as a manifold and computing its embeddings, the embedded electronic attributes retain the chemical intuition of molecular interactions. MEMS can be further featurized as input for chemical learning. Our solubility prediction with MEMS demonstrated the feasibility of both shallow and deep learning by neural networks, suggesting that MEMS is expressive and robust against dimensionality reduction.

SELECTION OF CITATIONS
SEARCH DETAIL
...