Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Insect Sci ; 31: 43-48, 2019 02.
Article in English | MEDLINE | ID: mdl-31109672

ABSTRACT

Juvenile hormone (JH) plays a crucial role in insect reproduction, but its molecular mode of action only became clear within the last decade. We here review recent findings revealing the intricate crosstalk between JH and ecdysone signaling with nutrient sensing pathways in Drosophila melanogaster, Aedes aegypti, Tribolium castaneum and Locusta migratoria. The finding for a critical role of ecdysis triggering hormone (ETH) in both molting and ooogenesis now also highlights the importance of an integrated view of development and reproduction. Furthermore, insights from non-model insects, especially so social Hymenoptera and termites, where JH function gradually becomes decoupled from reproduction and plays a role in division of labor, emphasize the need to consider life cycle and life history strategies when studying insect reproductive physiology.


Subject(s)
Insecta/physiology , Juvenile Hormones , Oogenesis , Animals , Female , Insecta/growth & development , Reproduction/physiology , Signal Transduction
2.
Insect Biochem Mol Biol ; 79: 1-12, 2016 12.
Article in English | MEDLINE | ID: mdl-27720811

ABSTRACT

Adult honey bee queens and workers drastically differ in ovary size. This adult ovary phenotype difference becomes established during the final larval instar, when massive programmed cell death leads to the degeneration of 95-99% of the ovariole anlagen in workers. The higher juvenile hormone (JH) levels in queen larvae protect the ovaries against such degeneration. To gain insights into the molecular architecture underlying this divergence critical for adult caste fate and worker sterility, we performed a microarray analysis on fourth and early fifth instar queen and worker ovaries. For the fourth instar we found nine differentially expressed genes (DEGs) with log2FC > 1.0, but this number increased to 56 in early fifth-instar ovaries. We selected 15 DEGs for quantitative PCR (RT-qPCR) analysis. Nine differed significantly by the variables caste and/or development. Interestingly, genes with enzyme functions were higher expressed in workers, while those related to transcription and signaling had higher transcript levels in queens. For the RT-qPCR confirmed genes we analyzed their response to JH. This revealed a significant up-regulation for two genes, a short chain dehydrogenase reductase (sdr) and a heat shock protein 90 (hsp90). Five other genes, including hsp60 and hexamerin 70b (hex70b), were significantly down-regulated by JH. The sdr gene had previously come up as differentially expressed in other transcriptome analyses on honey bee larvae and heat shock proteins are frequently involved in insect hormone responses, this making them interesting candidates for further functional assays.


Subject(s)
Bees/genetics , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Juvenile Hormones/metabolism , Animals , Bees/growth & development , Bees/metabolism , Female , Insect Proteins/metabolism , Larva/genetics , Larva/metabolism , Oligonucleotide Array Sequence Analysis , Ovary/growth & development , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...