Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 667(1-3): 175-81, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21658385

ABSTRACT

GABA(A) receptors meet all the pharmacological criteria required to be considered important general anaesthetic targets. In the following study, the modulatory effects of various commercially available and novel cyclohexanols were investigated on recombinant human γ-aminobutyric acid (GABA(A), α(1)ß(2)γ(2s)) receptors expressed in Xenopus oocytes, and compared to the modulatory effects on GABA currents observed with exposures to the intravenous anaesthetic agent, propofol. Submaximal EC(20) GABA currents were typically enhanced by co-applications of 3-300 µM cyclohexanols. For instance, at 30 µM 2,6-diisopropylcyclohexanol (a novel compound) GABA responses were increased ~3-fold (although similar enhancements were achieved at 3 µM propofol). As regards rank order for modulation by the cyclohexanol analogues at 30 µM, the % enhancements for 2,6-dimethylcyclohexanol~2,6-diethylcyclohexanol~2,6-diisopropylcyclohexanol~2,6-di-sec-butylcyclohexanol ≫2,6-di-tert-butylcyclohexanol~4-tert-butylcyclohexanol>cyclohexanol~cyclopentanol~2-methylcyclohexanol. We further tested the potencies of the cyclohexanol analogues as general anaesthetics using a tadpole in vivo assay. Both 2,6-diisopropylcyclohexanol and 2,6-dimethylcyclohexanol were effective as anaesthetics with EC(50)s of 14.0 µM and 13.1 µM respectively, while other cyclohexanols with bulkier side chains were less potent. In conclusion, our data indicate that cyclohexanols are both positive modulators of GABA(A) receptors currents and anaesthetics. The positioning and size of the alkyl groups at the 2 and 6 positions on the cyclohexanol ring were critical determinants of activity.


Subject(s)
Anesthetics, General/pharmacology , Cyclohexanols/chemistry , Cyclohexanols/pharmacology , Electric Conductivity , Receptors, GABA-A/metabolism , Animals , Electrophysiological Phenomena/drug effects , Humans , Larva/drug effects , Larva/metabolism , Larva/physiology , Oocytes/metabolism , Receptors, GABA-A/genetics , Xenopus laevis/genetics
2.
Eur J Pharmacol ; 590(1-3): 120-6, 2008 Aug 20.
Article in English | MEDLINE | ID: mdl-18593637

ABSTRACT

Menthol and related compounds were investigated for modulation of recombinant human gamma-aminobutyric acid type A (GABA(A), alpha(1)beta(2)gamma(2s)) receptor currents expressed in Xenopus oocytes. Sub-maximal (EC(20)) GABA currents were typically enhanced by co-applications of 3-300 microM (+)-menthol (e.g. by approximately 2-fold at 50 microM) > isopulegol > isomenthol> alpha-terpineol >> cyclohexanol. We studied menthol's actions on GABA(A) receptors compared to sedatives (benzodiazepines) and intravenous anesthetics (barbiturates, steroids, etomidate and propofol). Flumazenil (a benzodiazepine antagonist) did not inhibit menthol enhancements while currents directly activated by 50 microM propofol were significantly inhibited (by 26+/-3%) by 50 microM (+)-menthol. GABA(A) receptors containing beta(2) subunits with either a point mutation in a methionine residue to a tryptophan at the 286 position (in transmembrane domain 3, TM-3) or a tyrosine to a tryptophan at the 444 position (TM-4) are insensitive to modulation by propofol. Enhancements of GABA EC(20) currents by menthol were equally abolished in GABA(A) alpha(1)beta(2)(M286W)gamma(2s) and alpha(1)beta(2)(Y444W)gamma(2s) receptors while positive modulations by benzodiazepines, barbiturates and steroids were unaffected. Menthol may therefore exert its actions on GABA(A) receptors via sites distinct from benzodiazepines, steroids and barbiturates, and via sites important for modulation by propofol. Finally, using an in vivo tadpole assay, addition of (+)-menthol resulted in a loss of righting reflex with an EC(50) of 23.5+/-4.7 microM (approximately10-fold less potent anesthesia than propofol). Thus, menthol and analogs share general anesthetic action with propofol, possibly via action at similar sites on the GABA(A) receptor.


Subject(s)
Anesthetics, General/pharmacology , Anesthetics, Intravenous/pharmacology , Menthol/pharmacology , Propofol/pharmacology , Receptors, GABA-A/drug effects , Animals , Cyclohexanols/pharmacology , Flumazenil/pharmacology , Flunitrazepam/pharmacology , Pentobarbital/pharmacology , Pregnanolone/pharmacology , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...