Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37391496

ABSTRACT

RATIONALE: Various nonsocial cues have been used as stimuli to examine the contextual control of drug seeking behavior, but little is known about the role of social stimuli. OBJECTIVES: This study determined if renewal of cocaine seeking is differentially controlled using a context consisting of either a social peer and/or house light illumination. METHODS: In Experiment 1, male and female rats trained to self-administer cocaine in the presence of a same-sex social peer and house light illumination (context A). Following self-administration, rats were randomly assigned to either an AAA (control) or ABA (renewal) group for extinction. For AAA rats, extinction consisted of the same context A as self-administration; for ABA rats, extinction occurred without the peer or house light (context B). Following extinction, renewal of cocaine seeking occurred by testing the peer alone, house light alone, and the peer + house light combination. Experiment 2 was conducted to ensure that the house light alone was sufficiently salient to produce renewal. RESULTS: Both experiments showed that rats acquired cocaine self-administration and extinguished lever pressing. In Experiment 1, the ABA group renewed cocaine seeking to the peer and peer + house light, but not to the house light alone. In Experiment 2, ABA rats renewed cocaine seeking to the house light alone, indicating it was sufficiently salient to produce renewal. The AAA group did not show renewal in either experiment. CONCLUSION: Social peers serve as powerful stimuli that can overshadow nonsocial visual stimuli in the renewal of cocaine seeking.

2.
Addict Biol ; 27(5): e13217, 2022 09.
Article in English | MEDLINE | ID: mdl-36001434

ABSTRACT

The purpose of this study was to determine if social vs nonsocial cues (peer vs light/tone) can serve as discriminative stimuli to reinstate cocaine seeking. In addition, to assess a potential mechanism, an oxytocin (OT) promoter-linked hM3Dq DREADD was infused into the paraventricular nucleus of the hypothalamus to determine whether peer-induced cocaine seeking is decreased by activation of OT neurons. Male rats underwent twice-daily self-administration sessions, once with cocaine in the presence of one peer (S+) and once with saline in the presence of a different peer (S-). Another experiment used similar procedures, except the discriminative stimuli were nonsocial (constant vs flashing light/tone), with one stimulus paired with cocaine (S+) and the other paired with saline (S-). A third experiment injected male and female rats with OTp-hM3Dq DREADD or control virus into PVN and tested them for peer-induced reinstatement of cocaine seeking following clozapine (0.1 mg/kg). Although acquisition of cocaine self-administration was similar in rats trained with either peer or light/tone discriminative stimuli, the latency to first response was reduced by the peer S+, but not by the light/tone S+. In addition, the effect of the conditioned stimulus was overshadowed by the peer S+ but not by the light/tone S+. Clozapine blocked the effect of the peer S+ in rats receiving the OTp-hM3Dq DREADD virus, but not in rats receiving the control virus. These results demonstrate that a social peer can serve as potent trigger for drug seeking and that OT in PVN modulates peer-induced reinstatement of cocaine seeking.


Subject(s)
Clozapine , Cocaine-Related Disorders , Cocaine , Animals , Clozapine/pharmacology , Cocaine/pharmacology , Cues , Extinction, Psychological , Female , Male , Neurons , Oxytocin/pharmacology , Paraventricular Hypothalamic Nucleus , Rats , Self Administration
3.
Mol Psychiatry ; 27(4): 2171-2181, 2022 04.
Article in English | MEDLINE | ID: mdl-35064236

ABSTRACT

Ghrelin, an orexigenic hormone, has emerged as a critical biological substrate implicated in drug reward. However, the response of the ghrelin system to opioid-motivated behaviors and the role of ghrelin in oxycodone self-administration remain to be studied. Here, we investigated the reciprocal interactions between the endogenous ghrelin system and oxycodone self-administration behaviors in rats and the role of the ghrelin system in brain stimulation reward (BSR) driven by optogenetic stimulation of midbrain reward circuits in mice. Oxycodone self-administration significantly elevated plasma ghrelin, des-acyl ghrelin and growth hormone and showed no effect on plasma LEAP2, a newly identified endogenous ghrelin receptor (GHS-R1a) antagonist. Oxycodone self-administration produced significant decreases in plasma gastric inhibitory polypeptide and insulin. Acquisition of oxycodone self-administration significantly upregulated GHS-R1a mRNA levels in dopamine neurons in the ventral tegmental area (VTA), a brain region critical in drug reward. Pretreatment with JMV2959, a selective GHS-R1a antagonist, dose-dependently reduced oxycodone self-administration and decreased the breakpoint for oxycodone under a progressive ratio reinforcement in Long-Evans rats. The inhibitory effects of JMV2959 on oxycodone self-administration is selectively mediated by GHS-R1a as JMV2959 showed a similar effect in Wistar wildtype but not in GHS-R knockout rats. JMV2959 pretreatment significantly inhibited BSR driven by selective stimulation of VTA dopamine neurons, but not by stimulation of striatal GABA neurons projecting to the VTA in mice. These findings suggest that elevation of ghrelin signaling by oxycodone or oxycodone-associated stimuli is a causal process by which oxycodone motivates oxycodone drug-taking and targeting the ghrelin system may be a viable treatment approach for opioid use disorders.


Subject(s)
Ghrelin , Receptors, Ghrelin , Animals , Animals, Genetically Modified , Ghrelin/pharmacology , Mice , Oxycodone , Rats , Rats, Long-Evans , Rats, Wistar
4.
Addict Biol ; 26(4): e13005, 2021 07.
Article in English | MEDLINE | ID: mdl-33538103

ABSTRACT

Despite extensive research, the rewarding effects of cannabinoids are still debated. Here, we used a newly established animal procedure called optogenetic intracranial self-stimulation (ICSS) (oICSS) to re-examine the abuse potential of cannabinoids in mice. A specific adeno-associated viral vector carrying a channelrhodopsin gene was microinjected into the ventral tegmental area (VTA) to express light-sensitive channelrhodopsin in dopamine (DA) neurons of transgenic dopamine transporter (DAT)-Cre mice. Optogenetic stimulation of VTA DA neurons was highly reinforcing and produced a classical "sigmoidal"-shaped stimulation-response curve dependent upon the laser pulse frequency. Systemic administration of cocaine dose-dependently enhanced oICSS and shifted stimulation-response curves upward, in a way similar to previously observed effects of cocaine on electrical ICSS. In contrast, Δ9 -tetrahydrocannabinol (Δ9 -THC), but not cannabidiol, dose-dependently decreased oICSS responding and shifted oICSS curves downward. WIN55,212-2 and ACEA, two synthetic cannabinoids often used in laboratory settings, also produced dose-dependent reductions in oICSS. We then examined several new synthetic cannabinoids, which are used recreationally. XLR-11 produced a cocaine-like increase, AM-2201 produced a Δ9 -THC-like reduction, while 5F-AMB had no effect on oICSS responding. Immunohistochemistry and RNAscope in situ hybridization assays indicated that CB1 Rs are expressed mainly in VTA GABA and glutamate neurons, while CB2 Rs are expressed mainly in VTA DA neurons. Together, these findings suggest that most cannabinoids are not reward enhancing, but rather reward attenuating or aversive in mice. Activation of CB1 R and/or CB2 R in different populations of neurons in the brain may underlie the observed actions.


Subject(s)
Cannabinoids/adverse effects , Dopamine Plasma Membrane Transport Proteins/drug effects , Optogenetics/methods , Animals , Behavior, Animal , Cocaine/pharmacology , Dopaminergic Neurons , Dronabinol/pharmacology , Integrases , Male , Mice , Mice, Transgenic , Reward , Self Stimulation/drug effects , Ventral Tegmental Area/drug effects
5.
J Neurosci ; 40(46): 8853-8869, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33046548

ABSTRACT

Opioid reward has traditionally been thought to be mediated by GABA-induced disinhibition of dopamine (DA) neurons in the VTA. However, direct behavioral evidence supporting this hypothesis is still lacking. In this study, we found that the µ opioid receptor (MOR) gene, Oprm1, is highly expressed in GABA neurons, with ∼50% of GABA neurons in the substantia nigra pars reticulata (SNr), ∼30% in the VTA, and ∼70% in the tail of the VTA (also called the rostromedial tegmental nucleus) in male rats. No Oprm1 mRNA was detected in midbrain DA neurons. We then found that optogenetic inhibition of VTA DA neurons reduced intravenous heroin self-administration, whereas activation of these neurons produced robust optical intracranial self-stimulation in DAT-Cre mice, supporting an important role of DA neurons in opioid reward. Unexpectedly, pharmacological blockade of MORs in the SNr was more effective than in the VTA in reducing heroin reward. Optogenetic activation of VTA GABA neurons caused place aversion and inhibited cocaine, but not heroin, self-administration, whereas optogenetic activation of SNr GABA neurons caused a robust increase in heroin self-administration with an extinction pattern, suggesting a compensatory response in drug intake due to reduced heroin reward. In addition, activation of SNr GABA neurons attenuated heroin-primed, but not cue-induced, reinstatement of drug-seeking behavior, whereas inhibition of SNr GABA neurons produced optical intracranial self-stimulation and place preference. Together, these findings suggest that MORs on GABA neurons in the SNr play more important roles in opioid reward and relapse than MORs on VTA GABA neurons.SIGNIFICANCE STATEMENT Opioid reward has long been believed to be mediated by inhibition of GABA interneurons in the VTA that subsequently leads to disinhibition of DA neurons. In this study, we found that more µ opioid receptors (MORs) are expressed in GABA neurons in the neighboring SNr than in the VTA, and that pharmacological blockade of MORs in the SNr is more effective in reducing heroin reward than blockade of MORs in the VTA. Furthermore, optogenetic activation of VTA GABA neurons inhibited cocaine, but not heroin, self-administration, whereas activation of SNr GABA neurons inhibited heroin reward and relapse. These findings suggest that opioid reward is more likely mediated by stimulation of MORs in GABA afferents from other brain regions than in VTA GABA neurons.


Subject(s)
GABAergic Neurons/physiology , Heroin/pharmacology , Narcotics/pharmacology , Reward , Substantia Nigra/physiology , Ventral Tegmental Area/physiology , Animals , Cues , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Extinction, Psychological , Female , Male , Mesencephalon/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism , Optogenetics , Rats , Rats, Long-Evans , Receptors, Opioid, mu/biosynthesis , Receptors, Opioid, mu/genetics , Self Administration
6.
J Pharmacol Exp Ther ; 371(3): 602-614, 2019 12.
Article in English | MEDLINE | ID: mdl-31562201

ABSTRACT

Opioid and cocaine abuse are major public health burdens. Existing medications for opioid use disorder are limited by abuse liability and side effects, whereas no treatments are currently approved in the United States for cocaine use disorder. Dopamine D3 receptor (D3R) antagonists have shown promise in attenuating opioid and cocaine reward and mitigating relapse in preclinical models. However, translation of D3R antagonists to the clinic has been hampered by reports that the D3R antagonists GSK598,809 (5-(5-((3-((1S,5R)-1-(2-fluoro-4-(trifluoromethyl)phenyl)-3-azabicyclo[3.1.0]hexan-3-yl)propyl)thio)-4-methyl-4H-1,2,4-triazol-3-yl)-4-methyloxazole) and SB-277,011A (2-(2-((1r,4r)-4-(2-oxo-2-(quinolin-4-yl)ethyl)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonitrile) have adverse cardiovascular effects in the presence of cocaine. Recently, we developed two structurally novel D3R antagonists, R-VK4-40 and R-VK4-116, which are highly selective for D3R and display translational potential for treatment of opioid use disorder. Here, we tested whether R-VK4-40 ((R)-N-(4-(4-(2-Chloro-3-ethylphenyl)piperazin-1-yl)-3-hydroxybutyl)-1H-indole-2-carboxamide) and R-VK4-116 ((R)-N-(4-(4-(3-Chloro-5-ethyl-2-methoxyphenyl)piperazin-1-yl)-3-hydroxybutyl)-1H-indole-2-carboxamide) have unwanted cardiovascular effects in the presence of oxycodone, a prescription opioid, or cocaine in freely moving rats fitted with surgically implanted telemetry transmitters. We also examined cardiovascular effects of the D3R antagonist, SB-277,011A, and L-741,626 (1-((1H-indol-3-yl)methyl)-4-(4-chlorophenyl)piperidin-4-ol), a dopamine D2 receptor-selective antagonist, for comparison. Consistent with prior reports, SB-277,011A increased blood pressure, heart rate, and locomotor activity alone and in the presence of cocaine. L-741,626 increased blood pressure and heart rate. In contrast, R-VK4-40 alone dose-dependently reduced blood pressure and heart rate and attenuated oxycodone-induced increases in blood pressure and oxycodone or cocaine-induced increases in heart rate. Similarly, R-VK4-116 alone dose-dependently reduced cocaine-induced increases in blood pressure and heart rate. These results highlight the safety of new D3R antagonists and support the continued development of R-VK4-40 and R-VK4-116 for the treatment of opioid and cocaine use disorders. SIGNIFICANCE STATEMENT: Opioid and cocaine abuse are major public health challenges and new treatments that do not adversely impact the cardiovascular system are needed. Here, we show that two structurally novel dopamine D3 receptor antagonists, R-VK4-40 and R-VK4-116, do not potentiate, and may even protect against, oxycodone- or cocaine-induced changes in blood pressure and heart rate, supporting their further development for the treatment of opioid and/or cocaine use disorders.


Subject(s)
Blood Pressure/drug effects , Cocaine/pharmacology , Dopamine Antagonists/pharmacology , Heart Rate/drug effects , Indoles/pharmacology , Oxycodone/pharmacology , Piperazines/pharmacology , Receptors, Dopamine D3/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Male , Nitriles/pharmacology , Piperidines/pharmacology , Rats , Rats, Long-Evans , Tetrahydroisoquinolines/pharmacology
7.
Neuropharmacology ; 158: 107597, 2019 11 01.
Article in English | MEDLINE | ID: mdl-30974107

ABSTRACT

Prescription opioid abuse is a global crisis. New treatment strategies for pain and opioid use disorders are urgently required. We evaluated the effects of R-VK4-40, a highly selective dopamine (DA) D3 receptor (D3R) antagonist, on the rewarding and analgesic effects of oxycodone, the most commonly abused prescription opioid, in rats and mice. Systemic administration of R-VK4-40 dose-dependently inhibited oxycodone self-administration and shifted oxycodone dose-response curves downward in rats. Pretreatment with R-VK4-40 also dose-dependently lowered break-points for oxycodone under a progressive-ratio schedule. To determine whether a DA-dependent mechanism underlies the impact of D3 antagonism in reducing opioid reward, we used optogenetic approaches to examine intracranial self-stimulation (ICSS) maintained by optical activation of ventral tegmental area (VTA) DA neurons in DAT-Cre mice. Photoactivation of VTA DA in non-drug treated mice produced robust ICSS behavior. Lower doses of oxycodone enhanced, while higher doses inhibited, optical ICSS. Pretreatment with R-VK4-40 blocked oxycodone-enhanced brain-stimulation reward. By itself, R-VK4-40 produced a modest dose-dependent reduction in optical ICSS. Pretreatment with R-VK4-40 did not compromise the antinociceptive effects of oxycodone in rats, and R-VK4-40 alone produced mild antinociceptive effects without altering open-field locomotion or rotarod locomotor performance. Together, these findings suggest R-VK4-40 may permit a lower dose of prescription opioids for pain management, potentially mitigating tolerance and dependence, while diminishing reward potency. Hence, development of R-VK4-40 as a therapy for the treatment of opioid use disorders and/or pain is currently underway. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.


Subject(s)
Analgesics, Opioid/pharmacology , Behavior, Animal/drug effects , Dopamine Antagonists/pharmacology , Indoles/pharmacology , Nociception/drug effects , Oxycodone/pharmacology , Piperazines/pharmacology , Receptors, Dopamine D3/antagonists & inhibitors , Reward , Self Stimulation/drug effects , Animals , Dopaminergic Neurons/metabolism , Male , Optogenetics , Rats , Rats, Long-Evans , Reinforcement Schedule , Self Administration , Ventral Tegmental Area/metabolism
8.
Oncotarget ; 9(26): 18648-18663, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29719633

ABSTRACT

LncRNAs are long non-coding regulatory RNAs that are longer than 200 nucleotides. One of the major functions of lncRNAs is the regulation of specific gene expression at multiple steps including, recruitment and expression of basal transcription machinery, post-transcriptional modifications and epigenetics [1]. Emerging evidence suggests that lncRNAs also play a critical role in maintaining tissue homeostasis during physiological and pathological conditions, lipid homeostasis, as well as epithelial and smooth muscle cell homeostasis, a topic that has been elegantly reviewed [2-5]. While aberrant expression of lncRNAs has been implicated in several disease conditions, there is paucity of information about their contribution to the etiology of diseases [6]. Several studies have compared the expression of lncRNAs under normal and cancerous conditions and found differential expression of several lncRNAs, suggesting thereby an involvement of lncRNAs in disease processes [7, 8]. Furthermore, the ability of lncRNAs to influence epigenetic changes also underlies their role in disease pathogenesis since epigenetic regulation is known to play a critical role in many human diseases [1]. LncRNAs thus are not only involved in homeostatic functioning but also play a vital role in the progression of many diseases, thereby underscoring their potential as novel therapeutic targets for the alleviation of a variety of human disease conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...