Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Cheminform ; 16(1): 51, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730469

ABSTRACT

Chemical reaction optimization (RO) is an iterative process that results in large, high-dimensional datasets. Current tools allow for only limited analysis and understanding of parameter spaces, making it hard for scientists to review or follow changes throughout the process. With the recent emergence of using artificial intelligence (AI) models to aid RO, another level of complexity has been added. Helping to assess the quality of a model's prediction and understand its decision is critical to supporting human-AI collaboration and trust calibration. To address this, we propose CIME4R-an open-source interactive web application for analyzing RO data and AI predictions. CIME4R supports users in (i) comprehending a reaction parameter space, (ii) investigating how an RO process developed over iterations, (iii) identifying critical factors of a reaction, and (iv) understanding model predictions. This facilitates making informed decisions during the RO process and helps users to review a completed RO process, especially in AI-guided RO. CIME4R aids decision-making through the interaction between humans and AI by combining the strengths of expert experience and high computational precision. We developed and tested CIME4R with domain experts and verified its usefulness in three case studies. Using CIME4R the experts were able to produce valuable insights from past RO campaigns and to make informed decisions on which experiments to perform next. We believe that CIME4R is the beginning of an open-source community project with the potential to improve the workflow of scientists working in the reaction optimization domain. SCIENTIFIC CONTRIBUTION: To the best of our knowledge, CIME4R is the first open-source interactive web application tailored to the peculiar analysis requirements of reaction optimization (RO) campaigns. Due to the growing use of AI in RO, we developed CIME4R with a special focus on facilitating human-AI collaboration and understanding of AI models. We developed and evaluated CIME4R in collaboration with domain experts to verify its practical usefulness.

2.
Proc Natl Acad Sci U S A ; 121(21): e2318874121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753510

ABSTRACT

The single-pass transmembrane protein Stromal Interaction Molecule 1 (STIM1), located in the endoplasmic reticulum (ER) membrane, possesses two main functions: It senses the ER-Ca2+ concentration and directly binds to the store-operated Ca2+ channel Orai1 for its activation when Ca2+ recedes. At high resting ER-Ca2+ concentration, the ER-luminal STIM1 domain is kept monomeric but undergoes di/multimerization once stores are depleted. Luminal STIM1 multimerization is essential to unleash the STIM C-terminal binding site for Orai1 channels. However, structural basis of the luminal association sites has so far been elusive. Here, we employed molecular dynamics (MD) simulations and identified two essential di/multimerization segments, the α7 and the adjacent region near the α9-helix in the sterile alpha motif (SAM) domain. Based on MD results, we targeted the two STIM1 SAM domains by engineering point mutations. These mutations interfered with higher-order multimerization of ER-luminal fragments in biochemical assays and puncta formation in live-cell experiments upon Ca2+ store depletion. The STIM1 multimerization impeded mutants significantly reduced Ca2+ entry via Orai1, decreasing the Ca2+ oscillation frequency as well as store-operated Ca2+ entry. Combination of the ER-luminal STIM1 multimerization mutations with gain of function mutations and coexpression of Orai1 partially ameliorated functional defects. Our data point to a hydrophobicity-driven binding within the ER-luminal STIM1 multimer that needs to switch between resting monomeric and activated multimeric state. Altogether, these data reveal that interactions between SAM domains of STIM1 monomers are critical for multimerization and activation of the protein.


Subject(s)
Calcium , Endoplasmic Reticulum , Molecular Dynamics Simulation , Neoplasm Proteins , ORAI1 Protein , Protein Multimerization , Stromal Interaction Molecule 1 , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/chemistry , Humans , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/chemistry , Endoplasmic Reticulum/metabolism , Calcium/metabolism , ORAI1 Protein/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/chemistry , Protein Domains , HEK293 Cells , Binding Sites , Protein Binding
3.
Trends Cell Biol ; 34(5): 352-354, 2024 May.
Article in English | MEDLINE | ID: mdl-38494377

ABSTRACT

Calcium (Ca2+) plays a pivotal role in cellular signal transmission by triggering downstream signaling in response to an increase in the cytosolic Ca2+ concentration. Intracellular organelles serve as Ca2+ stores that induce differently shaped Ca2+ signals. We discuss a study by Yuan et al. that investigated the interplay between the lysosomal two-pore channel 2 (TPC2) and endoplasmic reticulum (ER)-localized inositol 1,4,5-trisphosphate receptors (IP3Rs).


Subject(s)
Calcium Channels , Calcium Signaling , Inositol 1,4,5-Trisphosphate Receptors , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Humans , Animals , Calcium Channels/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Lysosomes/metabolism
4.
Int J Mol Sci ; 25(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38203789

ABSTRACT

The epithelial ion channel TRPV6 plays a pivotal role in calcium homeostasis. Channel function is intricately regulated at different stages, involving the lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Given that dysregulation of TRPV6 is associated with various diseases, including different types of cancer, there is a compelling need for its pharmacological targeting. Structural studies provide insights on how TRPV6 is affected by different inhibitors, with some binding to sites else occupied by lipids. These include the small molecule cis-22a, which, however, also binds to and thereby blocks the pore. By combining calcium imaging, electrophysiology and optogenetics, we identified residues within the pore and the lipid binding site that are relevant for regulation by cis-22a and PIP2 in a bidirectional manner. Yet, mutation of the cytosolic pore exit reduced inhibition by cis-22a but preserved sensitivity to PIP2 depletion. Our data underscore allosteric communication between the lipid binding site and the pore and vice versa for most sites along the pore.


Subject(s)
Calcium , Phosphatidylinositols , TRPV Cation Channels , Binding Sites , Cytosol , Phosphatidylinositols/metabolism , TRPV Cation Channels/metabolism
5.
J Physiol ; 602(8): 1475-1507, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36651592

ABSTRACT

The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.

6.
IEEE Trans Vis Comput Graph ; 29(7): 3312-3326, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35254984

ABSTRACT

In this work, we propose an interactive visual approach for the exploration and formation of structural relationships in embeddings of high-dimensional data. These structural relationships, such as item sequences, associations of items with groups, and hierarchies between groups of items, are defining properties of many real-world datasets. Nevertheless, most existing methods for the visual exploration of embeddings treat these structures as second-class citizens or do not take them into account at all. In our proposed analysis workflow, users explore enriched scatterplots of the embedding, in which relationships between items and/or groups are visually highlighted. The original high-dimensional data for single items, groups of items, or differences between connected items and groups are accessible through additional summary visualizations. We carefully tailored these summary and difference visualizations to the various data types and semantic contexts. During their exploratory analysis, users can externalize their insights by setting up additional groups and relationships between items and/or groups. We demonstrate the utility and potential impact of our approach by means of two use cases and multiple examples from various domains.

7.
Comput Graph Forum ; 42(3): 337-348, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38505300

ABSTRACT

ParaDime is a framework for parametric dimensionality reduction (DR). In parametric DR, neural networks are trained to embed high-dimensional data items in a low-dimensional space while minimizing an objective function. ParaDime builds on the idea that the objective functions of several modern DR techniques result from transformed inter-item relationships. It provides a common interface for specifying these relations and transformations and for defining how they are used within the losses that govern the training process. Through this interface, ParaDime unifies parametric versions of DR techniques such as metric MDS, t-SNE, and UMAP. It allows users to fully customize all aspects of the DR process. We show how this ease of customization makes ParaDime suitable for experimenting with interesting techniques such as hybrid classification/embedding models and supervised DR. This way, ParaDime opens up new possibilities for visualizing high-dimensional data.

8.
Cells ; 11(11)2022 06 05.
Article in English | MEDLINE | ID: mdl-35681544

ABSTRACT

All human life starts with a calcium (Ca2+) wave. This ion regulates a plethora of cellular functions ranging from fertilisation and birth to development and cell death. A sophisticated system is responsible for maintaining the essential, tight concentration of calcium within cells. Intricate components of this Ca2+ network are store-operated calcium channels in the cells' membrane. The best-characterised store-operated channel is the Ca2+ release-activated Ca2+ (CRAC) channel. Currents through CRAC channels are critically dependent on the correct function of two proteins: STIM1 and Orai1. A disruption of the precise mechanism of Ca2+ entry through CRAC channels can lead to defects and in turn to severe impacts on our health. Mutations in either STIM1 or Orai1 proteins can have consequences on our immune cells, the cardiac and nervous system, the hormonal balance, muscle function, and many more. There is solid evidence that altered Ca2+ signalling through CRAC channels is involved in the hallmarks of cancer development: uncontrolled cell growth, resistance to cell death, migration, invasion, and metastasis. In this work we highlight the importance of Ca2+ and its role in human health and disease with focus on CRAC channels.


Subject(s)
Calcium Release Activated Calcium Channels , Calcium , Calcium/metabolism , Calcium Release Activated Calcium Channels/metabolism , Calcium Signaling/physiology , Humans , Literacy , ORAI1 Protein/metabolism
9.
Biomolecules ; 12(6)2022 06 08.
Article in English | MEDLINE | ID: mdl-35740929

ABSTRACT

The highly calcium-selective transient receptor potential vanilloid-type channel TRPV6 is important for epithelial Ca2+ transport. Proper regulation of the inherently constitutively active TRPV6 channels is intricate in preserving Ca2+ homeostasis, whereby structural and functional data suggest that lipids hold an essential role. Altered expression levels or specific TRPV6 mutations may lead to diseases, hence, TRPV6 represents an interesting target for pharmacological modulation. Recent cryo-EM data identified that the specific TRPV6 blocker cis-22a binds, apart from the pore, to a site within the tetrameric channel that largely matches a lipid binding pocket, LBS-2. Therein, cis-22a may replace a lipid such as cholesterol that is bound in the open state. Based on site-directed mutagenesis and functional recordings, we identified and characterized a series of residues within LBS-2 that are essential for TRPV6 inhibition by cis-22a. Additionally, we investigated the modulatory potential of diverse cholesterol depletion efforts on TRPV6 activity. While LBS-2 mutants exhibited altered maximum currents, slow Ca2+-dependent inactivation (SCDI) as well as less inhibition by cis-22a, TRPV6 activity was resistant to cholesterol depletion. Hence, lipids other than cholesterol may predominate TRPV6 regulation when the channel is expressed in HEK293 cells.


Subject(s)
Calcium Channels , Cholesterol , TRPV Cation Channels , Calcium/metabolism , Calcium Channels/metabolism , Cholesterol/metabolism , HEK293 Cells , Humans , Mutation , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/metabolism
10.
Cell Calcium ; 104: 102574, 2022 06.
Article in English | MEDLINE | ID: mdl-35395520

ABSTRACT

The family of stromal interaction molecules (STIMs), comprising the homologs STIM1 and STIM2 with their different isoforms, has an intricate role in cellular calcium (Ca2+) homeostasis and signal transduction. While this is predominantly accomplished in concert with plasma membrane Orai proteins, STIM1 and STIM2 show essential functional differences, as was recently further elucidated by Ahmad et al. [1].


Subject(s)
Calcium Signaling , Calcium , Calcium/metabolism , Cell Communication , Membrane Proteins/metabolism , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 2/metabolism
11.
J Cheminform ; 14(1): 21, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35379315

ABSTRACT

The introduction of machine learning to small molecule research- an inherently multidisciplinary field in which chemists and data scientists combine their expertise and collaborate - has been vital to making screening processes more efficient. In recent years, numerous models that predict pharmacokinetic properties or bioactivity have been published, and these are used on a daily basis by chemists to make decisions and prioritize ideas. The emerging field of explainable artificial intelligence is opening up new possibilities for understanding the reasoning that underlies a model. In small molecule research, this means relating contributions of substructures of compounds to their predicted properties, which in turn also allows the areas of the compounds that have the greatest influence on the outcome to be identified. However, there is no interactive visualization tool that facilitates such interdisciplinary collaborations towards interpretability of machine learning models for small molecules. To fill this gap, we present CIME (ChemInformatics Model Explorer), an interactive web-based system that allows users to inspect chemical data sets, visualize model explanations, compare interpretability techniques, and explore subgroups of compounds. The tool is model-agnostic and can be run on a server or a workstation.

12.
Cells ; 11(3)2022 01 22.
Article in English | MEDLINE | ID: mdl-35159181

ABSTRACT

Orai1, the Ca2+-selective pore in the plasma membrane, is one of the key components of the Ca2+release-activated Ca2+ (CRAC) channel complex. Activated by the Ca2+ sensor in the endoplasmic reticulum (ER) membrane, stromal interaction molecule 1 (STIM1), via direct interaction when ER luminal Ca2+ levels recede, Orai1 helps to maintain Ca2+ homeostasis within a cell. It has already been proven that the C-terminus of Orai1 is indispensable for channel activation. However, there is strong evidence that for CRAC channels to function properly and maintain all typical hallmarks, such as selectivity and reversal potential, additional parts of Orai1 are needed. In this review, we focus on these sites apart from the C-terminus; namely, the second loop and N-terminus of Orai1 and on their multifaceted role in the functioning of CRAC channels.


Subject(s)
Calcium Release Activated Calcium Channels , Calcium Channels/metabolism , Calcium Release Activated Calcium Channels/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism
13.
Cells ; 11(2)2022 01 12.
Article in English | MEDLINE | ID: mdl-35053369

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus that causes coronavirus disease 2019 (COVID-19). This respiratory illness was declared a pandemic by the world health organization (WHO) in March 2020, just a few weeks after being described for the first time. Since then, global research effort has considerably increased humanity's knowledge about both viruses and disease. It has also spawned several vaccines that have proven to be key tools in attenuating the spread of the pandemic and severity of COVID-19. However, with vaccine-related skepticism being on the rise, as well as breakthrough infections in the vaccinated population and the threat of a complete immune escape variant, alternative strategies in the fight against SARS-CoV-2 are urgently required. Calcium signals have long been known to play an essential role in infection with diverse viruses and thus constitute a promising avenue for further research on therapeutic strategies. In this review, we introduce the pivotal role of calcium signaling in viral infection cascades. Based on this, we discuss prospective calcium-related treatment targets and strategies for the cure of COVID-19 that exploit viral dependence on calcium signals.


Subject(s)
COVID-19 , Calcium Signaling , Pandemics , SARS-CoV-2/metabolism , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/therapy , Humans
14.
Int J Mol Sci ; 22(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466526

ABSTRACT

The calcium-release-activated calcium (CRAC) channel, activated by the release of Ca2+ from the endoplasmic reticulum (ER), is critical for Ca2+ homeostasis and active signal transduction in a plethora of cell types. Spurred by the long-sought decryption of the molecular nature of the CRAC channel, considerable scientific effort has been devoted to gaining insights into functional and structural mechanisms underlying this signalling cascade. Key players in CRAC channel function are the Stromal interaction molecule 1 (STIM1) and Orai1. STIM1 proteins span through the membrane of the ER, are competent in sensing luminal Ca2+ concentration, and in turn, are responsible for relaying the signal of Ca2+ store-depletion to pore-forming Orai1 proteins in the plasma membrane. A direct interaction of STIM1 and Orai1 allows for the re-entry of Ca2+ from the extracellular space. Although much is already known about the structure, function, and interaction of STIM1 and Orai1, there is growing evidence that CRAC under physiological conditions is dependent on additional proteins to function properly. Several auxiliary proteins have been shown to regulate CRAC channel activity by means of direct interactions with STIM1 and/or Orai1, promoting or hindering Ca2+ influx in a mechanistically diverse manner. Various proteins have also been identified to exert a modulatory role on the CRAC signalling cascade although inherently lacking an affinity for both STIM1 and Orai1. Apart from ubiquitously expressed representatives, a subset of such regulatory mechanisms seems to allow for a cell-type-specific control of CRAC channel function, considering the rather restricted expression patterns of the specific proteins. Given the high functional and clinical relevance of both generic and cell-type-specific interacting networks, the following review shall provide a comprehensive summary of regulators of the multilayered CRAC channel signalling cascade. It also includes proteins expressed in a narrow spectrum of cells and tissues that are often disregarded in other reviews of similar topics.


Subject(s)
Calcium Release Activated Calcium Channels/metabolism , Calcium/metabolism , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism , Animals , Cell Membrane/metabolism , Humans , Signal Transduction/physiology
15.
EMBO J ; 32(24): 3176-91, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24240174

ABSTRACT

The histone deacetylases HDAC1 and HDAC2 remove acetyl moieties from lysine residues of histones and other proteins and are important regulators of gene expression. By deleting different combinations of Hdac1 and Hdac2 alleles in the epidermis, we reveal a dosage-dependent effect of HDAC1/HDAC2 activity on epidermal proliferation and differentiation. Conditional ablation of either HDAC1 or HDAC2 in the epidermis leads to no obvious phenotype due to compensation by the upregulated paralogue. Strikingly, deletion of a single Hdac2 allele in HDAC1 knockout mice results in severe epidermal defects, including alopecia, hyperkeratosis, hyperproliferation and spontaneous tumour formation. These mice display impaired Sin3A co-repressor complex function, increased levels of c-Myc protein, p53 expression and apoptosis in hair follicles (HFs) and misregulation of HF bulge stem cells. Surprisingly, ablation of HDAC1 but not HDAC2 in a skin tumour model leads to accelerated tumour development. Our data reveal a crucial function of HDAC1/HDAC2 in the control of lineage specificity and a novel role of HDAC1 as a tumour suppressor in the epidermis.


Subject(s)
Epidermis/growth & development , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/metabolism , Skin Neoplasms/genetics , Alopecia/genetics , Animals , Apoptosis/genetics , Cell Lineage , Co-Repressor Proteins , Disease Models, Animal , Epidermis/enzymology , Epidermis/pathology , Gene Expression Regulation , Genes, Tumor Suppressor , Genes, p53 , Hair Follicle/pathology , Histone Deacetylase 1/genetics , Histone Deacetylase 2/genetics , Keratosis/genetics , Keratosis/pathology , Mice , Mice, Knockout , Mice, Transgenic , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Skin Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...