Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 22779, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38123837

ABSTRACT

The bio-adsorption of heavy metals (including Cu2+, Ni2+, and Zn2+) in aqueous solution and also in an industry wastewater using the ZnO-modified date pits (MDP) as the bio-adsorbent are investigated. The fresh and used bio-adsorbents were characterized by FT-IR, SEM, BET, and XRD. The bio-adsorption parameters (including the pH of solution, the particle size of MDP, the shaking speed, the initial concentration of heavy metals, the dosing of MDP, the adsorption time, and the adsorption temperature) were screened and the data were used to optimize the bio-adsorption process and to study the bio-adsorption isotherms, kinetics, and thermodynamics. Two adsorption models (Langmuir isotherm model and Freundlich isotherm model) and three kinetic models (pseudo-first-order model, pseudo-second-order model, and intra-particle diffusion model) were applied to model the experimental data. Results show that the maximum adsorption amount of Cu2+, Ni2+, and Zn2+ on a complete monolayer of MDP are 82.4, 71.9, and 66.3 mg g-1, which are over 4 times of those of date pits-based bio-adsorbents reported in literature. The bio-adsorption of heavy metals on MDP is spontaneous and exothermic, and is regulated by chemical adsorption on the homogeneous and heterogeneous adsorption sites of MDP surface. This work demonstrates an effective modification protocol for improved bio-adsorption performance of the date pits-based bio-adsorbent, which is cheap and originally from a waste.

2.
Chemosphere ; 287(Pt 1): 131907, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34438211

ABSTRACT

In this work, the inverse fluidized-bed bio-adsorption column is applied for the first time and is demonstrated using the torrefied rice husk (TRH) for the removal of methylene blue from the solution. The bio-adsorbents were characterized by BET, FI-IR, and SEM. The inverse fluidized-bed adsorption column using TRH becomes saturated in the 95-min continuous adsorption, during which the breakthrough time is 22 min, the overall MB removal (R) is 84%, and the adsorption capacity (Qexp) on the TRH is 6.82 mg g-1. These adsorption characteristics are superior to those in the fixed-bed adsorption column (R of 52% and Qexp of 2.76 mg g-1) at a lower flow rate (100 vs. 283 cm3 min-1). Torrefaction of RH significantly increases the surface area (28 vs. 9 m2 g-1) and enhances the surface functional groups, leading to an improved maximum equilibrium adsorption amount from 21.5 to 38.0 mg g-1 according to Langmuir model in the batch adsorption system. Besides, the increased Qexp on the TRH is also obtained in the inverse fluidized-bed (5.25 vs. 2.77 mg g-1, 89% higher) and the fixed-bed (2.76 vs. 1.53 mg g-1, 80% higher) adsorption columns compared to that on the RH.


Subject(s)
Oryza , Water Pollutants, Chemical , Water Purification , Adsorption , Kinetics , Methylene Blue , Water
3.
Nat Commun ; 7: 10748, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26888578

ABSTRACT

Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area, three-phase boundary for gas-liquid reactions. The performance of the copper electrode is significantly enhanced; at overpotentials between 200 and 400 mV, faradaic efficiencies for carbon dioxide reduction up to 85% are obtained. Moreover, the carbon monoxide formation rate is at least one order of magnitude larger when compared with state-of-the-art nanocrystalline copper electrodes. Copper hollow fibre electrodes can be prepared via a facile method that is compatible with existing large-scale production processes. The results of this study may inspire the development of new types of microtubular electrodes for electrochemical processes in which at least one gas-phase reactant is involved, such as in fuel cell technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...