Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 52(9): 1875-8, 2016 Jan 31.
Article in English | MEDLINE | ID: mdl-26673147

ABSTRACT

A versatile process for the construction of 1,3-polyols, a key structural element of polyketide-type natural products, is presented. The modular synthesis strategy involves the iterative chain elongation with novel four-carbon building blocks to access all possible stereoisomers of a growing 1,3-polyol chain. These chiral building blocks are designed to install four carbon atoms with two stereogenic centres by performing only four experimentally simple steps per elongation cycle, thus making these building blocks attractive for the realization of a universal platform from which to access a diverse range of polyketidic molecules.


Subject(s)
Polymers/chemistry , Stereoisomerism
2.
Chemistry ; 18(4): 1187-93, 2012 Jan 23.
Article in English | MEDLINE | ID: mdl-22189938

ABSTRACT

An operationally simple, direct azidation of 1,3-dicarbonyl compounds has been developed. The reaction proceeds readily under ambient conditions using sodium azide and an iodine-based oxidant such as I(2) or 2-iodoxybenzoic acid (IBX)-SO(3)K/NaI. In particular, the latter method, as a new and well-balanced oxidizing agent, shows excellent functional group tolerance and substrate scope and thus allows access to a variety of tertiary 2-azido and 2,2-bisazido 1,3-dicarbonyl compounds that would be more difficult to access by using traditional methods. Because the azide-containing products easily undergo 1,3-dipolar cycloaddition with alkynes, our report represents a novel route to analogues of sensitive complex molecules.


Subject(s)
Azides/chemistry , Carbon/chemistry , Iodine/chemistry , Oxygen/chemistry , Click Chemistry , Dimethyl Sulfoxide/chemistry , Molecular Structure , Oxidation-Reduction
3.
Beilstein J Org Chem ; 7: 847-59, 2011.
Article in English | MEDLINE | ID: mdl-21804881

ABSTRACT

Gold catalysis has emerged as one of the most dynamic fields in organic synthesis. Only recently, more and more domino processes, for which gold pre-catalysts were found to be outstandingly effective, were paralleled by employing iodine electrophiles in place of gold compounds. This review highlights how, in certain cases, iodonium activation can match gold-catalyzed reactions to construct identical product scaffolds. Likewise, processes are discussed where mostly identical starting materials are transformed into diverse frameworks depending on whether gold or iodonium activation was used to trigger the reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...