Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Reprod Fertil Dev ; 362024 Jun.
Article in English | MEDLINE | ID: mdl-38894494

ABSTRACT

Context Altered signalling of androgens, anti-Müllerian hormone or transforming growth factor beta (TGFß) during foetal development have been implicated in the predisposition to polycystic ovary syndrome (PCOS) in later life, aside from its genetic predisposition. In foetal ovarian fibroblasts, TGFß1 has been shown to regulate androgen signalling and seven genes located in loci associated with PCOS. Since PCOS exhibits a myriad of symptoms, it likely involves many different organs. Aims To identify the relationships between TGFß signalling molecules and PCOS candidate genes in different tissues associated with PCOS. Methods Using RNA sequencing data, we examined the expression patterns of TGFß signalling molecules in the human ovary, testis, heart, liver, kidney, brain tissue, and cerebellum from 4 to 20weeks of gestation and postnatally. We also examined the correlations between gene expression of TGFß signalling molecules and PCOS candidate genes. Key results TGFß signalling molecules were dynamically expressed in most tissues prenatally and/or postnatally. FBN3 , a PCOS candidate gene involved in TGFß signalling, was expressed during foetal development in all tissues. The PCOS candidate genes HMGA2, YAP1 , and RAD50 correlated significantly (P TGFBR1 in six out of the seven tissues examined. Conclusions This study suggests that possible crosstalk occurs between genes in loci associated with PCOS and TGFß signalling molecules in multiple tissues, particularly during foetal development. Implications Thus, alteration in TGFß signalling during foetal development could affect many tissues contributing to the multiple phenotypes of PCOS in later life.


Subject(s)
Polycystic Ovary Syndrome , Signal Transduction , Transforming Growth Factor beta , Humans , Female , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Adult , Ovary/metabolism , Fetus/metabolism , Male , Pregnancy , Gene Expression Regulation, Developmental , Testis/metabolism , Testis/embryology , Fibrillins
2.
Front Endocrinol (Lausanne) ; 14: 1149473, 2023.
Article in English | MEDLINE | ID: mdl-37223019

ABSTRACT

Background: Polycystic ovary syndrome (PCOS) is a heterogeneous disorder, affecting around 10% of women of reproductive age, with infertility, depression or anxiety, obesity, insulin resistance and type 2 diabetes as risk factors. The cause of PCOS is not known but there is a predisposition to developing PCOS in adult life that arises during fetal or perinatal life. PCOS also has a genetic predisposition and a number of genetic loci associated with PCOS have been identified. These loci contain 25 candidate genes which are currently being studied to define the syndrome. Although the name PCOS suggests a syndrome of the ovary, PCOS has also been associated with the central nervous system and other organ systems in the body due to the wide variety of symptoms it presents. Methods: Here, we examined the expression patterns of PCOS candidate genes in gonadal (ovary and testis), metabolic (heart, liver and kidney) and brain (brain and cerebellum) tissues during the first half of human fetal development and postnatally until adulthood using public RNA sequencing data. This study is an initial step for more comprehensive and translational studies to define PCOS. Results: We found that the genes were dynamically expressed in the fetal tissues studied. Some genes were significantly expressed in gonadal tissues, whilst others were expressed in metabolic or brain tissues at different time points prenatally and/or postnatally. HMGA2, FBN3 and TOX3 were highly expressed during the early stages of fetal development in all tissues but least during adulthood. Interestingly, correlation between expression of HMGA2/YAP1 and RAD50/YAP1 were significant in at least 5 of the 7 fetal tissues studied. Notably, DENND1A, THADA, MAPRE1, RAB5B, ARL14EP, KRR1, NEIL2 and RAD50 were dynamically expressed in all postnatal tissues studied. Conclusions: These findings suggest that these genes have tissue- or development-specific roles in multiple organs, possibly resulting in the various symptoms associated with PCOS. Thus the fetal origin of a predisposition to PCOS in adulthood could arise via the effects of PCOS candidate genes in the development of multiple organs.


Subject(s)
Diabetes Mellitus, Type 2 , Polycystic Ovary Syndrome , Adult , Pregnancy , Male , Humans , Female , Polycystic Ovary Syndrome/genetics , Gonads , Fetus , Brain
3.
Reprod Fertil ; 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36346793

ABSTRACT

Polycystic ovary syndrome (PCOS) is an endocrine metabolic disorder that appears to have a genetic predisposition and a fetal origin. The fetal ovary has two major somatic cell types shown previously to be of different cellular origins, different morphologies and to differentially express 15 genes. We isolated the somatic gonadal ridge epithelial-like (GREL) cells (n = 7) and ovarian fetal fibroblasts (n = 6) by clonal expansion. Using qRT-PCR, we compared the gene expression levels of PCOS candidate genes with previous data on the expression levels in whole fetal ovaries across gestation. We also compared these levels with those in bovine adult ovarian cells including fibroblasts (n = 4), granulosa cells (n = 5) and surface epithelial cells (n = 5). Adult cell types exhibited clear differences in the expression of most genes. In fetal ovarian cells, DENND1A and ERBB3 had significantly higher expression in GREL cells. HMGA2 and TGFB1I1 tended to have higher expression in fetal fibroblasts than GREL cells. Another 19 genes did not exhibit differences between GREL cells and fetal fibroblasts and FBN3, FSHB, LHCGR, FSHR and ZBTB16 were very lowly expressed in GREL cells and fibroblasts. The culture of fetal fibroblasts in EGF-containing medium resulted in lower expression of NEIL2, but higher expression of MAPRE1 compared to culture in the absence of EGF. Thus, the two fetal ovarian somatic cell types mostly lacked differential expression of PCOS candidate genes.

4.
PLoS One ; 17(7): e0268467, 2022.
Article in English | MEDLINE | ID: mdl-35802560

ABSTRACT

During ovarian development, gonadal ridge epithelial-like (GREL) cells arise from the epithelial cells of the ventral surface of the mesonephros. They ultimately develop into follicular granulosa cells or into ovarian surface epithelial cells. Stromal fibroblasts arise from the mesonephros and penetrate the ovary. We developed methods for isolating and culturing fetal ovarian GREL cells and ovarian fibroblasts by expansion of colonies without passage. In culture, these two cell types were morphologically different. We examined the expression profile of 34 genes by qRT-PCR, of which 24 genes had previously been studied in whole fetal ovaries. Expression of nine of the 10 newly-examined genes in fetal ovaries correlated with gestational age (MUC1, PKP2, CCNE1 and CCNE2 negatively; STAR, COL4A1, GJA1, LAMB2 and HSD17B1 positively). Comparison between GREL cells and fetal fibroblasts revealed higher expression of KRT19, PKP2, OCLN, MUC1, ESR1 and LGR5 and lower expression of GJA1, FOXL2, NR2F2, FBN1, COL1A1, NR5A1, CCND2, CCNE1 and ALDH1A1. Expression of CCND2, CCNE1, CCNE2, ESR2 and TGFBR1 was higher in the fetal fibroblasts than in adult fibroblasts; FBN1 was lower. Expression of OCLN, MUC1, LAMB2, NR5A1, ESR1, ESR2, and TGFBR3 was lower in GREL cells than ovarian surface epithelial cells. Expression of KRT19, DSG2, PKP2, OCLN, MUC1, FBN1, COL1A1, COL3A1, STAR and TGFBR2 was higher and GJA1, CTNNB1, LAMB2, NR5A1, CYP11A1, HSD3B1, CYP19A1, HSD17B1, FOXL2, ESR1, ESR2, TGFBR3 and CCND2 was lower in GREL cells compared to granulosa cells. TGFß1 altered the expression of COL1A1, COL3A1 and FBN1 in fetal fibroblasts and epidermal growth factor altered the expression of FBN1 and COL1A1. In summary, the two major somatic cell types of the developing ovary have distinct gene expression profiles. They, especially GREL cells, also differ from the cells they ultimately differentiate in to. The regulation of cell fate determination, particularly of the bi-potential GREL cells, remains to be elucidated.


Subject(s)
Granulosa Cells , Mesonephros , Animals , Cattle , Epithelial Cells , Female , Fibroblasts/metabolism , Granulosa Cells/metabolism , Ovary/metabolism
5.
Hum Reprod ; 37(6): 1244-1254, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35413103

ABSTRACT

STUDY QUESTION: Could changes in transforming growth factor ß (TGFß) signalling during foetal ovary development alter the expression of polycystic ovary syndrome (PCOS) candidate genes leading to a predisposition to PCOS? SUMMARY ANSWER: TGFß signalling molecules are dynamically expressed during foetal ovary development and TGFß1 inhibits expression of the androgen receptor (AR) and 7 (INSR, C8H9orf3, RAD50, ERBB3, NEIL2, IRF1 and ZBTB16) of the 25 PCOS candidate genes in foetal ovarian fibroblasts in vitro, whilst increasing expression of the AR cofactor TGFß-induced transcript 1 (TGFB1I1 or Hic5). WHAT IS KNOWN ALREADY: The ovarian stroma arises from the mesonephros during foetal ovary development. Changes in the morphology of the ovarian stroma are cardinal features of PCOS. The ovary is more fibrous and has more tunica and cortical and subcortical stroma. It is not known why this is and when this arises. PCOS has a foetal origin and perhaps ovarian stroma development is altered during foetal life to determine the formation of a polycystic ovary later in life. PCOS also has a genetic origin with 19 loci containing 25 PCOS candidate genes. In many adult tissues, TGFß is known to stimulate fibroblast replication and collagen deposition in stroma, though it has the opposite effect in the non-scaring foetal tissues. Our previous studies showed that TGFß signalling molecules [TGFßs and their receptors, latent TGFß binding proteins (LTBPs) and fibrillins, which are extracellular matrix proteins that bind LTBPs] are expressed in foetal ovaries. Also, we previously showed that TGFß1 inhibited expression of AR and 3 PCOS candidate genes (INSR, C8H9orf3 and RAD50) and stimulated expression of TGFB1I1 in cultured foetal ovarian fibroblasts. STUDY DESIGN, SIZE, DURATION: We used Bos taurus for this study as we can ethically collect foetal ovaries from across the full 9-month gestational period. Foetal ovaries (62-276 days, n = 19) from across gestation were collected from pregnant B. taurus cows for RNA-sequencing (RNA-seq) analyses. Foetal ovaries from B. taurus cows were collected (160-198 days, n = 6) for culture of ovarian fibroblasts. PARTICIPANTS/MATERIALS, SETTING, METHODS: RNA-seq transcriptome profiling was performed on foetal ovaries and the data on genes involved in TGFß signalling were extracted. Cells were dispersed from foetal ovaries and fibroblasts cultured and treated with TGFß1. The effects of TGFß regulation on the remaining eight PCOS candidate genes not previously studied (ERBB3, MAPRE1, FDFT1, NEIL2, ARL14EP, PLGRKT, IRF1 and ZBTB16) were examined. MAIN RESULTS AND THE ROLE OF CHANCE: Many TGFß signalling molecules are expressed in the foetal ovary, and for most, their expression levels increased accross gestation (LTBP1/2/3/4, FBN1, TGFB2/3, TGFBR2/3 and TGFB1I1), while a few decreased (FBN3, TGFBR3L, TGFBI and TGFB1) and others remained relatively constant (TGFBRAP1, TGFBR1 and FBN2). TGFß1 significantly decreased expression of PCOS candidate genes ERBB3, NEIL2, IRF1 and ZBTB16 in cultured foetal ovarian fibroblasts. LARGE SCALE DATA: The FASTQ files, normalized data and experimental information have been deposited in the Gene Expression Omnibus (GEO) accessible by accession number GSE178450. LIMITATIONS, REASONS FOR CAUTION: Regulation of PCOS candidate genes by TGFß was carried out in vitro and further studies in vivo are required. This study was carried out in bovine where foetal ovaries from across all of the 9-month gestational period were available, unlike in the human where it is not ethically possible to obtain ovaries from the second half of gestation. WIDER IMPLICATIONS OF THE FINDINGS: From our current and previous results we speculate that inhibition of TGFß signalling in the foetal ovary is likely to (i) increase androgen sensitivity by enhancing expression of AR, (ii) increase stromal activity by stimulating expression of COL1A1 and COL3A1 and (iii) increase the expression of 7 of the 25 PCOS candidate genes. Thus inhibition of TGFß signalling could be part of the aetiology of PCOS or at least the aetiology of polycystic ovaries. STUDY FUNDING/COMPETING INTEREST(S): Funding was received from Adelaide University China Fee Scholarship (M.L.), Australian Research Training Program (R.A.) and the Faculty of Health and Medical Science Divisional Scholarship (R.A.), Adelaide Graduate Research Scholarships (R.A. and N.A.B.), Australia Awards Scholarship (M.D.H.), Robinson Research Institute Career Development Fellowship (K.H.) and Building On Ideas Grant (K.H.), National Health and Medical Research Council of Australia Centre for Research Excellence in the Evaluation, Management and Health Care Needs of Polycystic Ovary Syndrome (N.A.B., M.D.H. and R.J.R.; GTN1078444) and the Centre for Research Excellence on Women's Health in Reproductive life (R.A., R.J.R. and K.H.; GTN1171592) and the UK Medical Research Council (R.A.A.; grant no. G1100357). The funders did not play any role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors of this manuscript have nothing to declare and no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.


Subject(s)
Polycystic Ovary Syndrome , Animals , Australia , Cattle , Female , Fetus , Humans , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Pregnancy , Transforming Growth Factor beta
6.
ChemMedChem ; 16(19): 3017-3026, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34196118

ABSTRACT

We report investigations on the anticancer activity of organometallic [MII/III (η6 -p-cymene/η5 -pentamethylcyclopentadienyl)] (M=Ru, Os, Rh, and Ir) complexes of N-heterocyclic carbenes (NHCs) substituted with a triazolyl moiety. Depending on the precursors, the NHC ligands displayed either mono- or bidentate coordination via the NHC carbon atom or as N,C-donors. The metal complexes were investigated for their stability in aqueous solution, with the interpretation supported by density functional theory calculations, and reactivity to biomolecules. In vitro cytotoxicity studies suggested that the nature of both the metal center and the lipophilicity of the ligand determine the biological properties of this class of compounds. The IrIII complex 5 d bearing a benzimidazole-derived ligand was the most cytotoxic with an IC50 value of 10 µM against NCI-H460 non-small cell lung carcinoma cells. Cell uptake and distribution studies using X-ray fluorescence microscopy revealed localization of 5 d in the cytoplasm of cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Heterocyclic Compounds/pharmacology , Methane/analogs & derivatives , Triazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Density Functional Theory , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Heterocyclic Compounds/chemistry , Humans , Methane/chemistry , Methane/pharmacology , Molecular Structure , Structure-Activity Relationship , Triazoles/chemistry
7.
Front Genet ; 12: 762177, 2021.
Article in English | MEDLINE | ID: mdl-35197999

ABSTRACT

Polycystic Ovary Syndrome (PCOS) is a multifactorial syndrome with reproductive, endocrine, and metabolic symptoms, affecting about 10% women of reproductive age. Pathogenesis of the syndrome is poorly understood with genetic and fetal origins being the focus of the conundrum. Genetic predisposition of PCOS has been confirmed by candidate gene studies and Genome-Wide Association Studies (GWAS). Recently, the expression of PCOS candidate genes across gestation has been studied in human and bovine fetal ovaries. The current study sought to identify potential upstream regulators and mechanisms associated with PCOS candidate genes. Using RNA sequencing data of bovine fetal ovaries (62-276 days, n = 19), expression of PCOS candidate genes across gestation was analysed using Partek Flow. A supervised heatmap of the expression data of all 24,889 genes across gestation was generated. Most of the PCOS genes fell into one of four clusters according to their expression patterns. Some genes correlated negatively (early genes; C8H9orf3, TOX3, FBN3, GATA4, HMGA2, and DENND1A) and others positively (late genes; FDFT1, LHCGR, AMH, FSHR, ZBTB16, and PLGRKT) with gestational age. Pathways associated with PCOS candidate genes and genes co-expressed with them were determined using Ingenuity pathway analysis (IPA) software as well as DAVID Bioinformatics Resources for KEGG pathway analysis and Gene Ontology databases. Genes expressed in the early cluster were mainly involved in mitochondrial function and oxidative phosphorylation and their upstream regulators included PTEN, ESRRG/A and MYC. Genes in the late cluster were involved in stromal expansion, cholesterol biosynthesis and steroidogenesis and their upstream regulators included TGFB1/2/3, TNF, ERBB2/3, VEGF, INSIG1, POR, and IL25. These findings provide insight into ovarian development of relevance to the origins of PCOS, and suggest that multiple aetiological pathways might exist for the development of PCOS.

8.
Molecules ; 25(16)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796732

ABSTRACT

Thiones have been investigated as ligands in metal complexes with catalytic and biological activity. We report the synthesis, characterization, and biological evaluation of a series of MII/III complexes of the general formulae [MII(cym)(L)Cl]X (cym = η6-p-cymene) or [MIII(Cp*)(L)Cl]X (Cp* = η5-pentamethylcyclopentadienyl), where X = Cl- or PF6-, and L represents heterocyclic derivatives of thiourea. The thiones feature a benzyl-triazolyl pendant and they act as bidentate ligands via N,S-coordination to the metal centers. Several derivatives have been investigated by single-crystal X-ray diffraction analysis. NMR investigations showed a counterion-dependent shift of several protons due to the interaction with the counterions. These NMR investigations were complemented with X-ray diffraction analysis data and the effects of different counterions on the secondary coordination sphere were also investigated by DFT calculations. In biological studies, the Ir benzimidazole derivative was found to accumulate in the cytoplasm and it was the most cytotoxic derivative investigated.


Subject(s)
Antineoplastic Agents/pharmacology , Chelating Agents/chemistry , Coordination Complexes/chemistry , Neoplasms/drug therapy , Organometallic Compounds/pharmacology , Thiourea/chemistry , Antineoplastic Agents/chemistry , Cell Survival , Humans , Models, Molecular , Molecular Structure , Neoplasms/pathology , Organometallic Compounds/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
9.
Biol Reprod ; 103(4): 840-853, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32678441

ABSTRACT

Polycystic ovary syndrome (PCOS) appears to have a genetic predisposition and a fetal origin. We compared the expression levels of 25 PCOS candidate genes from adult control and PCOS human ovaries (n = 16) using microarrays. Only one gene was potentially statistically different. Using qRT-PCR, expression of PCOS candidate genes was examined in bovine fetal ovaries from early stages when they first developed stroma through to completion of development (n = 27; 60-270 days of gestation). The levels of ERBB3 mRNA negatively correlated with gestational age but positively with HMGA2, FBN3, TOX3, GATA4, and DENND1A.X1,2,3,4, previously identified as correlated with each other and expressed early. PLGRKT and ZBTB16, and less so IRF1, were also correlated with AMH, FSHR, AR, INSR, and TGFB1I1, previously identified as correlated with each other and expressed late. ARL14EP, FDFT1, NEIL2, and MAPRE1 were expressed across gestation and not correlated with gestational age as shown previously for THADA, ERBB4, RAD50, C8H9orf3, YAP1, RAB5B, SUOX, and KRR1. LHCGR, because of its unusual bimodal expression pattern, had some unusual correlations with other genes. In human ovaries (n = 15; <150 days of gestation), ERBB3.V1 and ERBB3.VS were expressed and correlated negatively with gestational age and positively with FBN3, HMGA2, DENND1A.V1,3,4, DENND1A.V1-7, GATA4, and FSHR, previously identified as correlated with each other and expressed early. Thus, the general lack of differential expression of candidate genes in adult ovaries contrasting with dynamic patterns of gene expression in fetal ovaries is consistent with a vulnerability to disturbance in the fetal ovary that may underpin development of PCOS.


Subject(s)
Fetus/metabolism , Ovary/metabolism , Polycystic Ovary Syndrome/metabolism , Animals , Cattle , Female , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Protein Array Analysis
10.
Inorg Chem ; 59(5): 3281-3289, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32073260

ABSTRACT

Metal complexes provide a versatile platform to develop novel anticancer pharmacophores, and they form stable compounds with N-heterocyclic carbene (NHC) ligands, some of which have been shown to inhibit the cancer-related selenoenzyme thioredoxin reductase (TrxR). To expand a library of isostructural NHC complexes, we report here the preparation of RhIII- and IrIII(Cp*)(NHC)Cl2 (Cp* = η5-pentamethylcyclopentadienyl) compounds and comparison of their properties to the RuII- and OsII(cym) analogues (cym = η6-p-cymene). Like the RuII- and OsII(cym) complexes, the RhIII- and IrIII(Cp*) derivatives exhibit cytotoxic activity with half maximal inhibitory concentration (IC50) values in the low micromolar range against a set of four human cancer cell lines. In studies on the uptake and localization of the compounds in cancer cells by X-ray fluorescence microscopy, the Ru and Os derivatives were shown to accumulate in the cytoplasmic region of treated cells. In an attempt to tie the localization of the compounds to the inhibition of the tentative target TrxR, it was surprisingly found that only the Rh complexes showed significant inhibitory activity at IC50 values of ∼1 µM, independent of the substituents on the NHC ligand. This indicates that, although TrxR may be a potential target for anticancer metal complexes, it is unlikely the main target or the sole target for the Ru, Os, and Ir compounds described here, and other targets should be considered. In contrast, Rh(Cp*)(NHC)Cl2 complexes may be a scaffold for the development of TrxR inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Enzyme Inhibitors/pharmacology , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Ligands , Metals, Heavy/chemistry , Metals, Heavy/pharmacology , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology , Molecular Conformation , Structure-Activity Relationship , Thioredoxin-Disulfide Reductase/metabolism
11.
PLoS One ; 15(2): e0229351, 2020.
Article in English | MEDLINE | ID: mdl-32078641

ABSTRACT

Polycystic ovary syndrome (PCOS) affects around 10% of young women, with adverse consequences on fertility and cardiometabolic outcomes. PCOS appears to result from a genetic predisposition interacting with developmental events during fetal or perinatal life. We hypothesised that PCOS candidate genes might be expressed in the fetal ovary when the stroma develops; mechanistically linking the genetics, fetal origins and adult ovarian phenotype of PCOS. In bovine fetal ovaries (n = 37) of 18 PCOS candidate genes only SUMO1P1 was not expressed. Three patterns of expression were observed: early gestation (FBN3, GATA4, HMGA2, TOX3, DENND1A, LHCGR and FSHB), late gestation (INSR, FSHR, and LHCGR) and throughout gestation (THADA, ERBB4, RAD50, C8H9orf3, YAP1, RAB5B, SUOX and KRR1). A splice variant of FSHB exon 3 was also detected early in the bovine ovaries, but exon 2 was not detected. Three other genes, likely to be related to the PCOS aetiology (AMH, AR and TGFB1I1), were also expressed late in gestation. Significantly within each of the three gene groups, the mRNA levels of many genes were highly correlated with each other, despite, in some instances, being expressed in different cell types. TGFß is a well-known stimulator of stromal cell replication and collagen synthesis and TGFß treatment of cultured fetal ovarian stromal cells inhibited the expression of INSR, AR, C8H9orf3 and RAD50 and stimulated the expression of TGFB1I1. In human ovaries (n = 15, < 150 days gestation) many of the same genes as in bovine (FBN3, GATA4, HMGA2, FSHR, DENND1A and LHCGR but not TOX3 or FSHB) were expressed and correlated with each other. With so many relationships between PCOS candidate genes during development of the fetal ovary, including TGFß and androgen signalling, we suggest that future studies should determine if perturbations of these genes in the fetal ovary can lead to PCOS in later life.


Subject(s)
Biomarkers/analysis , Fetal Development/genetics , Gene Expression Regulation, Developmental , Ovary/pathology , Polycystic Ovary Syndrome/pathology , Polymorphism, Single Nucleotide , Adult , Animals , Cattle , Female , Genes, Regulator , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Ovary/metabolism , Polycystic Ovary Syndrome/genetics , Pregnancy , Stromal Cells/metabolism , Stromal Cells/pathology
12.
J Histochem Cytochem ; 68(2): 113-126, 2020 02.
Article in English | MEDLINE | ID: mdl-31855103

ABSTRACT

When first formed, the ovary only has an established epithelium at its base or hilum. Later, an epithelium is established around the rest of the ovary. To examine this further, we conducted scanning electron microscopy of the surface of bovine fetal ovaries and immunohistochemistry of ovarian cross-sections. From the earliest time point, the cells on the surface of the base or hilum of the ovary were cuboidal. On the remainder of the ovary, the surface was more irregular. By mid-development, the surface was covered completely with either a stratified or simple epithelium of cuboidal cells. Clefts were observed in the surface and appeared to form due to the expansion of stroma surrounding each open ovigerous cord, elevating the areas surrounding each cord, while leaving the opening of the cord to form the base of each cleft. The continued expansion of the surrounding stroma below the surface appeared not only to close the ovigerous cords from the surface but to compress the clefts into the shape of a groove. Later, most of the ovarian surface was covered with a simple cuboidal epithelium. The changes to the ovarian surface during fetal development coincide with the remodeling of the stroma and cords below.


Subject(s)
Epithelium/metabolism , Fetal Development , Ovary/cytology , Animals , Cattle , Female , Immunohistochemistry , Ovary/metabolism
13.
Reproduction ; 157(6): 545-565, 2019 06.
Article in English | MEDLINE | ID: mdl-30925461

ABSTRACT

The ovary has specialised stromal compartments, including the tunica albuginea, interstitial stroma and theca interna, which develops concurrently with the follicular antrum. To characterise the molecular determinants of these compartments, stroma adjacent to preantral follicles (pre-theca), interstitium and tunica albuginea were laser microdissected (n = 4 per group) and theca interna was dissected from bovine antral follicles (n = 6). RNA microarray analysis showed minimal differences between interstitial stroma and pre-theca, and these were combined for some analyses and referred to as stroma. Genes significantly upregulated in theca interna compared to stroma included INSL3, LHCGR, HSD3B1, CYP17A1, ALDH1A1, OGN, POSTN and ASPN. Quantitative RT-PCR showed significantly greater expression of OGN and LGALS1 in interstitial stroma and theca interna versus tunica and greater expression of ACD in tunica compared to theca interna. PLN was significantly higher in interstitial stroma compared to tunica and theca. Ingenuity pathway, network and upstream regulator analyses were undertaken. Cell survival was also upregulated in theca interna. The tunica albuginea was associated with GPCR and cAMP signalling, suggesting tunica contractility. It was also associated with TGF-ß signalling and increased fibrous matrix. Western immunoblotting was positive for OGN, LGALS1, ALDH1A1, ACD and PLN with PLN and OGN highly expressed in tunica and interstitial stroma (each n = 6), but not in theca interna from antral follicles (n = 24). Immunohistochemistry localised LGALS1 and POSTN to extracellular matrix and PLN to smooth muscle cells. These results have identified novel differences between the ovarian stromal compartments.


Subject(s)
Biomarkers/metabolism , Ovarian Follicle/metabolism , Ovary/metabolism , Stromal Cells/metabolism , Theca Cells/metabolism , Transcriptome , Animals , Cattle , Female , Ovarian Follicle/cytology , Ovary/cytology , Signal Transduction , Stromal Cells/cytology , Theca Cells/cytology
14.
PLoS One ; 14(3): e0213575, 2019.
Article in English | MEDLINE | ID: mdl-30856218

ABSTRACT

Movement and expansion of mesonephric-derived stroma appears to be very important in the development of the ovary. Here, we examined the expression of 24 genes associated with stroma in fetal ovaries during gestation (n = 17; days 58-274) from Bos taurus cattle. RNA was isolated from ovaries for quantitative RT-PCR. Expression of the majority of genes in TGFß signalling, stromal transcription factors (NR2F2, AR), and some stromal matrix genes (COL1A1, COL3A1 and FBN1, but not FBN3) showed a positive linear increase with gestational age. Expression of genes associated with follicles (INSL3, CYP17A1, CYP11A1 and HSD3B1), was low until mid-gestation and then increased with gestational age. LHCGR showed an unusual bimodal pattern; high levels in the first and last trimesters. RARRES1 and IGFBP3 also increased with gestational age. To relate changes in gene expression in stromal cells with that in non stromal cells during development of the ovary we combined the data on the stromal genes with another 20 genes from non stromal cells published previously and then performed hierarchical clustering analysis. Three major clusters were identified. Cluster 1 genes (GATA4, FBN3, LHCGR, CYP19A1, ESR2, OCT4, DSG2, TGFB1, CCND2, LGR5, NR5A1) were characterised by high expression only in the first trimester. Cluster 2 genes (FSHR, INSL3, HSD3B1, CYP11A1, CYP17A1, AMH, IGFBP3, INHBA) were highly expressed in the third trimester and largely associated with follicle function. Cluster 3 (COL1A1, COL3A1, FBN1, TGFB2 TGFB3, TGFBR2, TGFBR3, LTBP2, LTBP3, LTBP4, TGFB1I1, ALDH1A1, AR, ESR1, NR2F2) had much low expression in the first trimester rising in the second trimester and remaining at that level during the third trimester. Cluster 3 contained members of two pathways, androgen and TGFß signalling, including a common member of both pathways namely the androgen receptor cofactor TGFß1 induced transcript 1 protein (TGFB1I1; hic5). GATA4, FBN3 and LHCGR, were highly correlated with each other and were expressed highly in the first trimester during stromal expansion before follicle formation, suggesting that this could be a critical phase in the development of the ovarian stroma.


Subject(s)
Cattle/embryology , Gene Expression Regulation, Developmental , Ovary/embryology , Animals , Cattle/genetics , Cattle/metabolism , Female , Gene Regulatory Networks , Gestational Age , Multigene Family , Ovary/cytology , Ovary/metabolism , Pregnancy , Signal Transduction , Theca Cells/cytology , Theca Cells/metabolism , Transcriptome , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
15.
PLoS One ; 14(3): e0214130, 2019.
Article in English | MEDLINE | ID: mdl-30901367

ABSTRACT

Cells on the surface of the mesonephros give rise to replicating Gonadal Ridge Epithelial-Like (GREL) cells, the first somatic cells of the gonadal ridge. Later germ cells associate with the GREL cells in the ovigerous cords, and the GREL cells subsequently give rise to the granulosa cells in follicles. To examine these events further, 27 bovine fetal ovaries of different gestational ages were collected and prepared for immunohistochemical localisation of collagen type I and Ki67 to identify regions of the ovary and cell proliferation, respectively. The non-stromal cortical areas (collagen-negative) containing GREL cells and germ cells and later in development, the follicles with oocytes and granulosa cells, were analysed morphometrically. Another set of ovaries (n = 17) were collected and the expression of genes associated with germ cell lineages and GREL/granulosa cells were quantitated by RT-PCR. The total volume of non-stromal areas in the cortex increased significantly and progressively with ovarian development, plateauing at the time the surface epithelium developed. However, the proportion of non-stromal areas in the cortex declined significantly and progressively throughout gestation, largely due to a cessation in growth of the non-stroma cells and the continued growth of stroma. The proliferation index in the non-stromal area was very high initially and then declined substantially at the time follicles formed. Thereafter, it remained low. The numerical density of the non-stromal cells was relatively constant throughout ovarian development. The expression levels of a number of genes across gestation either increased (AMH, FSHR, ESR1, INHBA), declined (CYP19A1, ESR2, ALDH1A1, DSG2, OCT4, LGR5) or showed no particular pattern (CCND2, CTNNB1, DAZL, FOXL2, GATA4, IGFBP3, KRT19, NR5A1, RARRES1, VASA, WNT2B). Many of the genes whose expression changed across gestation, were positively or negatively correlated with each other. The relationships between these genes may reflect their roles in the important events such as the transition of ovigerous cords to follicles, oogonia to oocytes or GREL cells to granulosa cells.


Subject(s)
Cattle/embryology , Gene Expression Regulation, Developmental , Ovary/embryology , Animals , Cattle/genetics , Female , Germ Cells/cytology , Germ Cells/metabolism , Granulosa Cells/cytology , Granulosa Cells/metabolism , Mesonephros/cytology , Mesonephros/embryology , Mesonephros/metabolism , Ovary/cytology , Ovary/metabolism
16.
Med Hypotheses ; 124: 31-34, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30798911

ABSTRACT

Polycystic ovary syndrome (PCOS) affects around 10% of women of reproductive age and is most common in developed countries. The aetiology of PCOS is not completely understood. Current evidence suggests that the syndrome results from a genetic predisposition interacting with developmental events during fetal or perinatal life that together increase susceptibility in some individuals. This implies that environmental factors influence the initiation of PCOS in the fetus or infant, either directly or via the mother. PCOS is often considered to be an ancient disorder but there is no direct proof of this in the medical or historic record. One of the cardinal features, polycystic ovaries, was first described only in the early 1900s, despite reports of many thousands of autopsies recorded earlier. This conundrum could be explained by postulating that polycystic ovaries were rare before the 1900s and have become more common over the last 100 years. The hypothesis that PCOS is a syndrome of the 20th Century would eliminate the need to explain the paradox of why there exists a genetic predisposition to subfertility syndrome.


Subject(s)
Polycystic Ovary Syndrome/epidemiology , Polycystic Ovary Syndrome/history , Adult , Androgens , Comorbidity , Environment , Female , Genetic Predisposition to Disease , History, 20th Century , History, 21st Century , Humans , Infertility, Female , Models, Theoretical , Ovary/pathology , Polycystic Ovary Syndrome/etiology , Prevalence
17.
PLoS One ; 12(3): e0173391, 2017.
Article in English | MEDLINE | ID: mdl-28282394

ABSTRACT

In vitro culture of ovarian granulosa cells and theca cells has been very important for our understanding of their function and regulation. One of the most eagerly sought attributes of cell culture is the use of chemically-defined conditions. However, even under such in vitro conditions cell behaviour could differ from the in vivo situation because of differences in oxygen tension, nutrients, adhesion matrix and other factors. To examine this further we compared the transcriptomes of both granulosa cells and cells from the theca interna that were cultured in what are arguably the best in vitro conditions for maintaining the 'follicular' phenotypes of both tissue types, as displayed by their respective freshly-isolated counterparts. The array data analysed are from recently published data and use the same sizes of bovine follicles (small antral 3-6 mm) and the same Affymetrix arrays. We conducted analysis using Partek, Ingenuity Pathway Analysis and GOEAST. Principal Component Analysis (PCA) and hierarchical clustering clearly separated the in vivo from the in vitro groups for both cells types and transcriptomes were more homogeneous upon culture. In both cell cultures behaviours associated with cell adhesion, migration and interaction with matrix or substrate were more abundant. However, the pathways involved generally differed between the two cell types. With the thecal cultures a gene expression signature of an immune response was more abundant, probably by leukocytes amongst the cells cultured from the theca interna. These results indicate differences between in vivo and in vitro that should be considered when interpreting in vitro data.


Subject(s)
Granulosa Cells/metabolism , Theca Cells/metabolism , Transcriptome , Animals , Cattle , Cells, Cultured , Cluster Analysis , Down-Regulation , Female , Gene Expression Profiling , Gene Regulatory Networks , Granulosa Cells/cytology , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Principal Component Analysis , RNA/isolation & purification , RNA/metabolism , Theca Cells/cytology , Up-Regulation
18.
Reproduction ; 152(2): 127-37, 2016 08.
Article in English | MEDLINE | ID: mdl-27222596

ABSTRACT

Fibrillins 1-3 are stromal extracellular matrix proteins that play important roles in regulating TGFß activity, which stimulates fibroblasts to proliferate and synthesize collagen. In the developing ovary, the action of stroma is initially necessary for the formation of ovigerous cords and subsequently for the formation of follicles and the surface epithelium of the ovary. FBN3 is highly expressed only in early ovarian development and then it declines. In contrast, FBN1 and 2 are upregulated in later ovarian development. We examined the expression of FBN1-3 in bovine and human fetal ovaries. We used cell dispersion and monolayer culture, cell passaging and tissue culture. Cells were treated with growth factors, hormones or inhibitors to assess the regulation of expression of FBN1-3 When bovine fetal ovarian tissue was cultured, FBN3 expression declined significantly. Treatment with TGFß-1 increased FBN1 and FBN2 expression in bovine fibroblasts, but did not affect FBN3 expression. Additionally, in cultures of human fetal ovarian fibroblasts (9-17weeks gestational age), the expression of FBN1 and FBN2 increased with passage, whereas FBN3 dramatically decreased. Treatment with activin A and a TGFß family signaling inhibitor, SB431542, differentially regulated the expression of a range of modulators of TGFß signaling and of other growth factors in cultured human fetal ovarian fibroblasts suggesting that TGFß signaling is differentially involved in the regulation of ovarian fibroblasts. Additionally, since the changes in FBN1-3 expression that occur in vitro are those that occur with increasing gestational age in vivo, we suggest that the fetal ovarian fibroblasts mature in vitro.


Subject(s)
Activins/metabolism , Fetus/metabolism , Fibrillins/metabolism , Gene Expression Regulation , Ovary/metabolism , Transforming Growth Factor beta/metabolism , Animals , Cattle , Cells, Cultured , Female , Fetus/cytology , Fibrillin-1/metabolism , Fibrillin-2/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Ovary/cytology , Pregnancy
19.
Biol Reprod ; 94(4): 86, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26864198

ABSTRACT

Traditionally, research in the field of trace element biology and human and animal health has largely depended on epidemiological methods to demonstrate involvement in biological processes. These studies were typically followed by trace element supplementation trials or attempts at identification of the biochemical pathways involved. With the discovery of biological molecules that contain the trace elements, such as matrix metalloproteinases containing zinc (Zn), cytochrome P450 enzymes containing iron (Fe), and selenoproteins containing selenium (Se), much of the current research focuses on these molecules, and, hence, only indirectly on trace elements themselves. This review focuses largely on two synchrotron-based x-ray techniques: X-ray absorption spectroscopy and x-ray fluorescence imaging that can be used to identify the in situ speciation and distribution of trace elements in tissues, using our recent studies of bovine ovaries, where the distribution of Fe, Se, Zn, and bromine were determined. It also discusses the value of other techniques, such as inductively coupled plasma mass spectrometry, used to garner information about the concentrations and elemental state of the trace elements. These applications to measure trace elemental distributions in bovine ovaries at high resolutions provide new insights into possible roles for trace elements in the ovary.


Subject(s)
Ovary/metabolism , Trace Elements/metabolism , Animals , Bromine/metabolism , Female , Iron/metabolism , Ovary/chemistry , Reproduction , Selenium/metabolism , Trace Elements/analysis , X-Ray Absorption Spectroscopy , Zinc/metabolism
20.
Microsc Microanal ; 21(3): 695-705, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25850937

ABSTRACT

X-ray fluorescence (XRF) was used to image 40 histological cross-sections of bovine ovaries (n=19), focusing on structures including: antral follicles at different stages of growth or atresia, corpora lutea at three stages of development (II-IV), and capillaries, arterioles, and other blood vessels. This method identified three key trace elements [iron (Fe), zinc (Zn), and selenium (Se)] within the ovarian tissue which appeared to be localized to specific structures. Owing to minimal preprocessing of the ovaries, important high-resolution information regarding the spatial distribution of these elements was obtained with elemental trends and colocalizations of Fe and Zn apparent, as well as the infrequent appearance of Se surrounding the antrum of large follicles, as previously reported. The ability to use synchrotron radiation to measure trace element distributions in bovine ovaries at such high resolution and over such large areas could have a significant impact on understanding the mechanisms of ovarian development. This research is intended to form a baseline study of healthy ovaries which can later be extended to disease states, thereby improving our current understanding of infertility and endocrine diseases involving the ovary.


Subject(s)
Iron/analysis , Optical Imaging/methods , Ovary/anatomy & histology , Ovary/chemistry , Selenium/analysis , Trace Elements/analysis , Zinc/analysis , Animals , Cattle , Female , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...