Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 4(4)2021 04.
Article in English | MEDLINE | ID: mdl-33563652

ABSTRACT

Increasing levels of the cold-shock protein, RNA-binding motif 3 (RBM3), either through cooling or by ectopic over-expression, prevents synapse and neuronal loss in mouse models of neurodegeneration. To exploit this process therapeutically requires an understanding of mechanisms controlling cold-induced RBM3 expression. Here, we show that cooling increases RBM3 through activation of TrkB via PLCγ1 and pCREB signaling. RBM3, in turn, has a hitherto unrecognized negative feedback on TrkB-induced ERK activation through induction of its specific phosphatase, DUSP6. Thus, RBM3 mediates structural plasticity through a distinct, non-canonical activation of TrkB signaling, which is abolished in RBM3-null neurons. Both genetic reduction and pharmacological antagonism of TrkB and its downstream mediators abrogate cooling-induced RBM3 induction and prevent structural plasticity, whereas TrkB inhibition similarly prevents RBM3 induction and the neuroprotective effects of cooling in prion-diseased mice. Conversely, TrkB agonism induces RBM3 without cooling, preventing synapse loss and neurodegeneration. TrkB signaling is, therefore, necessary for the induction of RBM3 and related neuroprotective effects and provides a target by which RBM3-mediated synapse-regenerative therapies in neurodegenerative disorders can be used therapeutically without the need for inducing hypothermia.


Subject(s)
Membrane Glycoproteins/metabolism , Neuroprotection , Protein-Tyrosine Kinases/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , Animals , Biomarkers , Brain-Derived Neurotrophic Factor/metabolism , Cold Temperature , Membrane Glycoproteins/agonists , Mice , Phosphorylation , Prion Diseases/genetics , Prion Diseases/metabolism , Prion Diseases/pathology , Prions/metabolism , Protein Binding , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Signal Transduction/drug effects , Synapses/drug effects , Synapses/metabolism , Synapses/ultrastructure
2.
Nat Commun ; 11(1): 131, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31919423

ABSTRACT

Astrocytes provide neurons with essential metabolic and structural support, modulate neuronal circuit activity and may also function as versatile surveyors of brain milieu, tuned to sense conditions of potential metabolic insufficiency. Here we show that astrocytes detect falling cerebral perfusion pressure and activate CNS autonomic sympathetic control circuits to increase systemic arterial blood pressure and heart rate with the purpose of maintaining brain blood flow and oxygen delivery. Studies conducted in experimental animals (laboratory rats) show that astrocytes respond to acute decreases in brain perfusion with elevations in intracellular [Ca2+]. Blockade of Ca2+-dependent signaling mechanisms in populations of astrocytes that reside alongside CNS sympathetic control circuits prevents compensatory increases in sympathetic nerve activity, heart rate and arterial blood pressure induced by reductions in cerebral perfusion. These data suggest that astrocytes function as intracranial baroreceptors and play an important role in homeostatic control of arterial blood pressure and brain blood flow.


Subject(s)
Astrocytes/physiology , Blood Pressure/physiology , Brain/blood supply , Cerebrovascular Circulation/physiology , Heart Rate/physiology , Animals , Calcium/metabolism , Calcium Signaling/physiology , Hemodynamics , Homeostasis , Rats , Rats, Sprague-Dawley , Sympathetic Nervous System/physiology
3.
Neuron ; 105(5): 855-866.e5, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31924446

ABSTRACT

Recent interest in astrocyte activation states has raised the fundamental question of how these cells, normally essential for synapse and neuronal maintenance, become pathogenic. Here, we show that activation of the unfolded protein response (UPR), specifically phosphorylated protein kinase R-like endoplasmic reticulum (ER) kinase (PERK-P) signaling-a pathway that is widely dysregulated in neurodegenerative diseases-generates a distinct reactivity state in astrocytes that alters the astrocytic secretome, leading to loss of synaptogenic function in vitro. Further, we establish that the same PERK-P-dependent astrocyte reactivity state is harmful to neurons in vivo in mice with prion neurodegeneration. Critically, targeting this signaling exclusively in astrocytes during prion disease is alone sufficient to prevent neuronal loss and significantly prolongs survival. Thus, the astrocyte reactivity state resulting from UPR over-activation is a distinct pathogenic mechanism that can by itself be effectively targeted for neuroprotection.


Subject(s)
Astrocytes/metabolism , Eukaryotic Initiation Factor-2B/metabolism , Neurodegenerative Diseases/metabolism , Prion Diseases/metabolism , Synapses/metabolism , Unfolded Protein Response/physiology , eIF-2 Kinase/metabolism , Animals , Endoplasmic Reticulum Stress/drug effects , Enzyme Inhibitors/pharmacology , In Vitro Techniques , Memory , Mice , Phosphorylation , Protein Biosynthesis , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Signal Transduction , Thapsigargin/pharmacology , Transcriptome , Tunicamycin/pharmacology , Unfolded Protein Response/drug effects
4.
Brain Res ; 1650: 178-183, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27616338

ABSTRACT

Increased activity of the sympathetic nervous system has been highlighted as a key factor that contributes to the development and maintenance of arterial hypertension. However, the factors that precipitate sustained increases in sympathetic activity remain poorly understood. Resting tissue oxygen partial pressure (PtO2) in the brainstem of anesthetized spontaneously hypertensive rats (SHRs) has been shown to be lower than in normotensive rats despite normal levels of arterial PO2. A hypoxic environment in the brainstem has been postulated to activate astroglial signalling mechanisms in the rostral ventrolateral medulla (RVLM) which in turn increase the excitability of presympathetic neuronal networks. In this study, we assessed the expression of indirect markers of tissue hypoxia and astroglial cell activation in the RVLM of SHRs and age-matched normotensive Wistar rats. Immunohistochemical labelling for hypoxia-induced factor-1α (HIF-1α) and bound pimonidazole adducts revealed the presence of tissue hypoxia in the RVLM of SHRs. Double immunostaining showed co-localization of bound pimonidazole labelling in putative presympathetic C1 neurons and in astroglial cells. Quantification of glial fibrillary acidic protein (GFAP) immunofluorescence showed relatively higher number of astrocytes and increased GFAP mean grey value density, whilst semi-quantitative analysis of skeletonized GFAP-immunoreactive processes revealed greater % area covered by astrocytic processes in the RVLM of adult SHRs. In conclusion, the morphological findings of tissue hypoxia and astrogliosis within brainstem presympathetic neuronal networks in the SHR support previous observations, showing that low brainstem PtO2 and increased astroglial signalling in the RVLM play an important role in pathological sympathoexcitation associated with the development of arterial hypertension.


Subject(s)
Gliosis/metabolism , Hypoxia/metabolism , Animals , Astrocytes/metabolism , Astrocytes/physiology , Blood Pressure/physiology , Brain Stem/metabolism , Heart Rate , Hypertension/physiopathology , Male , Medulla Oblongata/physiology , Neurons/metabolism , Rats , Rats, Inbred SHR , Rats, Wistar , Sympathetic Nervous System/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...