Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Ann Oncol ; 26(5): 880-887, 2015 May.
Article in English | MEDLINE | ID: mdl-25732040

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most common malignant brain cancer occurring in adults, and is associated with dismal outcome and few therapeutic options. GBM has been shown to predominantly disrupt three core pathways through somatic aberrations, rendering it ideal for precision medicine approaches. METHODS: We describe a 35-year-old female patient with recurrent GBM following surgical removal of the primary tumour, adjuvant treatment with temozolomide and a 3-year disease-free period. Rapid whole-genome sequencing (WGS) of three separate tumour regions at recurrence was carried out and interpreted relative to WGS of two regions of the primary tumour. RESULTS: We found extensive mutational and copy-number heterogeneity within the primary tumour. We identified a TP53 mutation and two focal amplifications involving PDGFRA, KIT and CDK4, on chromosomes 4 and 12. A clonal IDH1 R132H mutation in the primary, a known GBM driver event, was detectable at only very low frequency in the recurrent tumour. After sub-clonal diversification, evidence was found for a whole-genome doubling event and a translocation between the amplified regions of PDGFRA, KIT and CDK4, encoded within a double-minute chromosome also incorporating miR26a-2. The WGS analysis uncovered progressive evolution of the double-minute chromosome converging on the KIT/PDGFRA/PI3K/mTOR axis, superseding the IDH1 mutation in dominance in a mutually exclusive manner at recurrence, consequently the patient was treated with imatinib. Despite rapid sequencing and cancer genome-guided therapy against amplified oncogenes, the disease progressed, and the patient died shortly after. CONCLUSION: This case sheds light on the dynamic evolution of a GBM tumour, defining the origins of the lethal sub-clone, the macro-evolutionary genomic events dominating the disease at recurrence and the loss of a clonal driver. Even in the era of rapid WGS analysis, cases such as this illustrate the significant hurdles for precision medicine success.


Subject(s)
Brain Neoplasms/genetics , Chromosomes, Human , Glioblastoma/genetics , Isocitrate Dehydrogenase/genetics , Mutation , Adult , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Chemotherapy, Adjuvant , Cyclin-Dependent Kinase 4/genetics , Dacarbazine/analogs & derivatives , Dacarbazine/therapeutic use , Disease Progression , Fatal Outcome , Female , Genetic Association Studies , Genetic Predisposition to Disease , Glioblastoma/enzymology , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Imatinib Mesylate/therapeutic use , Neoplasm Grading , Neoplasm Recurrence, Local , Neurosurgical Procedures , Phenotype , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-kit/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Temozolomide , Time Factors , Treatment Outcome
2.
Nature ; 429(6990): 369-74, 2004 May 27.
Article in English | MEDLINE | ID: mdl-15164053

ABSTRACT

Chromosome 9 is highly structurally polymorphic. It contains the largest autosomal block of heterochromatin, which is heteromorphic in 6-8% of humans, whereas pericentric inversions occur in more than 1% of the population. The finished euchromatic sequence of chromosome 9 comprises 109,044,351 base pairs and represents >99.6% of the region. Analysis of the sequence reveals many intra- and interchromosomal duplications, including segmental duplications adjacent to both the centromere and the large heterochromatic block. We have annotated 1,149 genes, including genes implicated in male-to-female sex reversal, cancer and neurodegenerative disease, and 426 pseudogenes. The chromosome contains the largest interferon gene cluster in the human genome. There is also a region of exceptionally high gene and G + C content including genes paralogous to those in the major histocompatibility complex. We have also detected recently duplicated genes that exhibit different rates of sequence divergence, presumably reflecting natural selection.


Subject(s)
Chromosomes, Human, Pair 9/genetics , Genes , Physical Chromosome Mapping , Base Composition , Euchromatin/genetics , Evolution, Molecular , Female , Gene Duplication , Genes, Duplicate/genetics , Genetic Variation/genetics , Genetics, Medical , Genomics , Heterochromatin/genetics , Humans , Male , Neoplasms/genetics , Neurodegenerative Diseases/genetics , Pseudogenes/genetics , Sequence Analysis, DNA , Sex Determination Processes
3.
Nature ; 419(6906): 527-31, 2002 Oct 03.
Article in English | MEDLINE | ID: mdl-12368867

ABSTRACT

Since the sequencing of the first two chromosomes of the malaria parasite, Plasmodium falciparum, there has been a concerted effort to sequence and assemble the entire genome of this organism. Here we report the sequence of chromosomes 1, 3-9 and 13 of P. falciparum clone 3D7--these chromosomes account for approximately 55% of the total genome. We describe the methods used to map, sequence and annotate these chromosomes. By comparing our assemblies with the optical map, we indicate the completeness of the resulting sequence. During annotation, we assign Gene Ontology terms to the predicted gene products, and observe clustering of some malaria-specific terms to specific chromosomes. We identify a highly conserved sequence element found in the intergenic region of internal var genes that is not associated with their telomeric counterparts.


Subject(s)
DNA, Protozoan , Plasmodium falciparum/genetics , Animals , Base Sequence , Chromosomes , Genes, Protozoan , Genome, Protozoan , Molecular Sequence Data , Multigene Family , Proteome , Protozoan Proteins/genetics , Sequence Analysis, DNA
5.
Nature ; 409(6822): 934-41, 2001 Feb 15.
Article in English | MEDLINE | ID: mdl-11237014

ABSTRACT

The human genome is by far the largest genome to be sequenced, and its size and complexity present many challenges for sequence assembly. The International Human Genome Sequencing Consortium constructed a map of the whole genome to enable the selection of clones for sequencing and for the accurate assembly of the genome sequence. Here we report the construction of the whole-genome bacterial artificial chromosome (BAC) map and its integration with previous landmark maps and information from mapping efforts focused on specific chromosomal regions. We also describe the integration of sequence data with the map.


Subject(s)
Contig Mapping , Genome, Human , Chromosomes, Artificial, Bacterial , Cloning, Molecular , DNA Fingerprinting , Gene Duplication , Humans , In Situ Hybridization, Fluorescence , Repetitive Sequences, Nucleic Acid
6.
Nature ; 409(6822): 942-3, 2001 Feb 15.
Article in English | MEDLINE | ID: mdl-11237015

ABSTRACT

We constructed maps for eight chromosomes (1, 6, 9, 10, 13, 20, X and (previously) 22), representing one-third of the genome, by building landmark maps, isolating bacterial clones and assembling contigs. By this approach, we could establish the long-range organization of the maps early in the project, and all contig extension, gap closure and problem-solving was simplified by containment within local regions. The maps currently represent more than 94% of the euchromatic (gene-containing) regions of these chromosomes in 176 contigs, and contain 96% of the chromosome-specific markers in the human gene map. By measuring the remaining gaps, we can assess chromosome length and coverage in sequenced clones.


Subject(s)
Chromosomes, Human, Pair 10 , Chromosomes, Human, Pair 13 , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 20 , Chromosomes, Human, Pair 6 , Contig Mapping , Genome, Human , X Chromosome , Humans
7.
Genomics ; 71(3): 315-23, 2001 Feb 01.
Article in English | MEDLINE | ID: mdl-11170748

ABSTRACT

Bipolar affective disorder (BPAD) is a complex disease with a significant genetic component and a population lifetime risk of 1%. Our previous work identified a region of human chromosome 4p that showed significant linkage to BPAD in a large pedigree. Here, we report the construction of an accurate, high-resolution physical map of 6.9 Mb of human chromosome 4p15.3-p16.1, which includes an 11-cM (5.8 Mb) critical region for BPAD. The map consists of 460 PAC and BAC clones ordered by a combination of STS content analysis and restriction fragment fingerprinting, with a single approximately 300-kb gap remaining. A total of 289 new and existing markers from a wide range of sources have been localized on the contig, giving an average marker resolution of 1 marker/23 kb. The STSs include 57 ESTs, 9 of which represent known genes. This contig is an essential preliminary to the identification of candidate genes that predispose to bipolar affective disorder, to the completion of the sequence of the region, and to the development of a high-density SNP map.


Subject(s)
Bipolar Disorder/genetics , Chromosomes, Artificial, Bacterial , Chromosomes, Human, Pair 4 , Contig Mapping , DNA Fingerprinting , DNA Primers/metabolism , DNA Restriction Enzymes/metabolism , Expressed Sequence Tags , Genetic Markers , Genetic Predisposition to Disease , Humans , In Situ Hybridization, Fluorescence , Interphase , Models, Genetic , Molecular Sequence Data , Polymerase Chain Reaction , RNA, Messenger/metabolism , Radiation Hybrid Mapping , Sequence Tagged Sites
8.
Genome Res ; 10(11): 1772-87, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11076862

ABSTRACT

Contigs have been assembled, and over 2800 clones selected for sequencing for human chromosomes 9, 10 and 13. Using the FPC (FingerPrinted Contig) software, the contigs are assembled with markers and complete digest fingerprints, and the contigs are ordered and localised by a global framework. Publicly available resources have been used, such as, the 1998 International Gene Map for the framework and the GSC Human BAC fingerprint database for the majority of the fingerprints. Additional markers and fingerprints are generated in-house to supplement this data. To support the scale up of building maps, FPC V4.7 has been extended to use markers with the fingerprints for assembly of contigs, new clones and markers can be automatically added to existing contigs, and poorly assembled contigs are marked accordingly. To test the automatic assembly, a simulated complete digest of 110 Mb of concatenated human sequence was used to create datasets with varying coverage, length of clones, and types of error. When no error was introduced and a tolerance of 7 was used in assembly, the largest contig with no false positive overlaps has 9534 clones with 37 out-of-order clones, that is, the starting coordinates of adjacent clones are in the wrong order. This paper describes the new features in FPC, the scenario for building the maps of chromosomes 9, 10 and 13, and the results from the simulation.


Subject(s)
Contig Mapping/methods , DNA Fingerprinting/methods , Genetic Markers , Software , Chromosomes, Human, Pair 10/genetics , Chromosomes, Human, Pair 13/genetics , Chromosomes, Human, Pair 9/genetics , Computational Biology , Computer Simulation , Contig Mapping/standards , Contig Mapping/statistics & numerical data , DNA Fingerprinting/standards , DNA Fingerprinting/statistics & numerical data , DNA Fragmentation/genetics , Databases, Factual , Humans , Internet , Models, Statistical , Numerical Analysis, Computer-Assisted , Physical Chromosome Mapping
9.
Genomics ; 64(3): 264-76, 2000 Mar 15.
Article in English | MEDLINE | ID: mdl-10756094

ABSTRACT

Genetic studies have previously assigned a quantitative trait locus (QTL) for hemoglobin F and F cells to a region of approximately 4 Mb between the markers D6S408 and D6S292 on chromosome 6q23. An initial yeast artificial chromosome contig of 13 clones spanning this region was generated. Further linkage analysis of an extended kindred refined the candidate interval to 1-2 cM, and key recombination events now place the QTL within a region of <800 kb. We describe a high-resolution bacterial clone contig spanning 3 Mb covering this critical region. The map consists of 223 bacterial artificial chromosome (BAC) and 100 P1 artificial chromosome (PAC) clones ordered by sequence-tagged site (STS) content and restriction fragment fingerprinting with a minimum tiling path of 22 BACs and 1 PAC. A total of 194 STSs map to this interval of 3 Mb, giving an average marker resolution of approximately one per 15 kb. About half of the markers were novel and were isolated in the present study, including three CA repeats and 13 single nucleotide polymorphisms. Altogether 24 expressed sequence tags, 6 of which are unique genes, have been mapped to the contig.


Subject(s)
Chromosomes, Human, Pair 6/genetics , Contig Mapping , Fetal Hemoglobin/genetics , Quantitative Trait, Heritable , Base Sequence , Chromosomes, Artificial, Yeast , Expressed Sequence Tags , Female , Genetic Linkage , Haplotypes , Humans , Male , Molecular Sequence Data , Pedigree , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length
10.
J Mol Biol ; 291(4): 789-99, 1999 Aug 27.
Article in English | MEDLINE | ID: mdl-10452889

ABSTRACT

We have mapped and sequenced the region immediately centromeric of the human major histocompatibility complex (MHC). A cluster of 13 genes/pseudogenes was identified in a 175 kb PAC linking the TAPASIN locus with the class II region. It includes two novel human genes (BING4 and SACM2L) and a thus far unnoticed human leucocyte antigen (HLA) class II pseudogene, termed HLA-DPA3. Analysis of the G+C content revealed an isochore boundary which, together with the previously reported telomeric boundary, defines the MHC class II region as one of the first completely sequenced isochores in the human genome. Comparison of the sequence with limited sequence from other cell lines shows that the high sequence variation found within the classical class II region extends beyond the identified isochore boundary leading us to propose the concept of an "extended MHC". By comparative analysis, we have precisely identified the mouse/human synteny breakpoint at the centromeric end of the extended MHC class II region between the genes HSET and PHF1.


Subject(s)
Major Histocompatibility Complex , Amino Acid Sequence , Animals , Base Composition , Base Sequence , Centromere/genetics , Chromosome Mapping , DNA, Complementary/chemistry , DNA, Complementary/genetics , Genes, MHC Class II , Genetic Variation , Genome, Human , HLA-DP Antigens/genetics , Humans , Mice , Molecular Sequence Data , Phylogeny , Pseudogenes , Sequence Homology, Amino Acid
11.
Genome Res ; 8(6): 631-43, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9647638

ABSTRACT

We have physically mapped and cloned a 2.5-Mb chromosomal segment flanking the centromeric end of the major histocompatibility complex (MHC). We characterized in detail 27 YACs, 144 cosmids, 51 PACs, and 5 BACs, which will facilitate the complete genomic sequencing of this region of chromosome 6. The contig contains the genes encoding CSBP, p21, HSU09564 serine kinase, ZNF76, TCP-11, RPS10, HMGI(Y), BAK, and the human homolog of Tctex-7 (HSET). The GLO1 gene was mapped further centromeric in the 6p21.2-6p21.1 region toward TCTE-1. The gene order of the GLO1-HMGI(Y) segment in respect to the centromere is similar to the gene order in the mouse t-chromosome distal inversion, indicating that there is conservation in gene content but not gene order between humans and mice in this region. The close linkage of the BAK and CSBP genes to the MHC is of interest because of their possible involvement in autoimmune disease.


Subject(s)
Bacterial Proteins , Centromere/genetics , Chromosomes, Human, Pair 6/genetics , Major Histocompatibility Complex/genetics , Physical Chromosome Mapping , Bacteriophages/genetics , Chromosomes, Artificial, Yeast , Chromosomes, Bacterial , Contig Mapping , Cosmids/chemical synthesis , Deoxyribonuclease EcoRI/genetics , Deoxyribonucleases, Type II Site-Specific/genetics , Electrophoresis, Gel, Pulsed-Field , Humans , In Situ Hybridization, Fluorescence
12.
Genomics ; 49(3): 351-62, 1998 May 01.
Article in English | MEDLINE | ID: mdl-9615219

ABSTRACT

Acquired deletions of the long arm of chromosome 20 are the most common chromosomal abnormality seen in polycythemia vera and are also associated with other myeloid malignancies. Such deletions are believed to mark the site of one or more tumor suppressor genes, loss of which perturbs normal hematopoiesis. A common deleted region (CDR) has previously been identified on 20q. We have now constructed the most detailed physical map of this region to date--a YAC contig that encompasses the entire CDR and spans 23 cM (11 Mb). This contig contains 140 DNA markers and 65 unique expressed sequences. Our data represent a first step toward a complete transcriptional map of the CDR. The high marker density within the physical map permitted two complementary approaches to reducing the size of the CDR. Microsatellite PCR refined the centromeric boundary of the CDR to D20S465 and was used to search for homozygous deletions in 28 patients using 32 markers. No such deletions were detected. Genetic changes on the remaining chromosome 20 may therefore be too small to be detected or may occur in a subpopulation of cells.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 20 , Myeloproliferative Disorders/genetics , Transcription, Genetic , Centromere , Chromosome Mapping , Chromosomes, Artificial, Yeast , DNA/blood , DNA/genetics , Family , Genetic Markers , Genotype , Granulocytes , Homozygote , Humans , Microsatellite Repeats , Polycythemia Vera/genetics , T-Lymphocytes
13.
Eur J Immunol ; 28(2): 459-67, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9521053

ABSTRACT

The Tapasin molecule is a member of the immunoglobulin (Ig) superfamily required for the association of TAP transporters and MHC class I heterodimers in the endoplasmic reticulum. In this study, the Tapasin gene was precisely mapped in relation to the MHC. The gene was centromeric of the HLA-DP locus between the HSET and HKE1.5 genes and within 500 kbp of the TAP1 and TAP2 genes. A homologous mouse EST was mapped to a syntenic position on chromosome 17, centromeric of the H-2 K locus. Similarly, the rat Tapasin gene was shown to be in an equivalent location with respect to the RT1.A locus. The localization of Tapasin, TAP, LMP and class I genes within such a short distance of each other on the chromosome implies some regulatory or functional significance. We determined the Tapasin gene sequence for comparison of its structure to that of other Ig superfamily members, such as MHC class I genes. The IgC domain was encoded by a separate exon. However, the positions of the other introns were not characteristic of other Ig superfamily genes, indicating that Tapasin has a distinct phylogeny.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Antiporters/genetics , Genes, MHC Class I/immunology , Immunoglobulins/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 2 , Amino Acid Sequence , Animals , Antiporters/chemistry , Antiporters/isolation & purification , Base Sequence , Centromere/chemistry , Centromere/immunology , Exons , Histocompatibility Antigens Class I/genetics , Humans , Immunoglobulins/chemistry , Immunoglobulins/isolation & purification , Introns , Membrane Transport Proteins , Mice , Molecular Sequence Data , Phylogeny , Rats
14.
DNA Seq ; 8(3): 151-4, 1997.
Article in English | MEDLINE | ID: mdl-10668960

ABSTRACT

Our aim is to construct physical clone maps covering those regions of chromosome 6 that are not currently extensively mapped, and use these to determine the DNA sequence of the whole chromosome. The strategy we are following involves establishing a high density framework map of the order of 15 markers per Megabase using radiation hybrid (RH) mapping. The markers are then used to identify large-insert genomic bacterial clones covering the chromosome, which are assembled into sequence-ready contigs by restriction enzyme fingerprinting and sequence tagged site (STS) content analysis. Contig gap closure is performed by walking experiments using STSs developed from the end sequences of the clone inserts.


Subject(s)
Chromosomes, Human, Pair 6/genetics , Contig Mapping , Databases, Factual , Humans , Sequence Analysis, DNA
15.
Genome Res ; 6(10): 943-55, 1996 Oct.
Article in English | MEDLINE | ID: mdl-8908513

ABSTRACT

The human X chromosome is associated with a large number of disease phenotypes, principally because of its unique mode of inheritance that tends to reveal all recessive disorders in males. With the longer term goal of identifying and characterizing most of these genes, we have adopted a chromosome-wide strategy to establish a YAC contig map. We have performed > 3250 inter Alu-PCR product hybridizations to identify overlaps between YAC clones. Positional information associated with many of these YAC clones has been derived from our Reference Library Database and a variety of other public sources. We have constructed a YAC contig map of the X chromosome covering 125 Mb of DNA in 25 contigs and containing 906 YAC clones. These contigs have been verified extensively by FISH and by gel and hybridization fingerprinting techniques. This independently derived map exceeds the coverage of recently reported X chromosome maps built as part of whole-genome YAC maps.


Subject(s)
X Chromosome , Chromosome Mapping , Chromosomes, Artificial, Yeast , Cloning, Molecular , DNA Fingerprinting , Humans , In Situ Hybridization, Fluorescence , Male
16.
DNA Seq ; 7(1): 47-9, 1996.
Article in English | MEDLINE | ID: mdl-9063638

ABSTRACT

The development of radiation hybrid (RH) mapping (Cox et al., 1990) and the availability of large numbers of STS markers, together with extensive bacterial clone resources provided a means to accelerate the process of mapping a human chromosome and preparing bacterial clone contigs ready to sequence. Our aim is to construct physical clone maps covering those regions of chromosome 6 that are not currently extensively mapped, and use these to determine the DNA sequence of the whole chromosome. We report here a strategy which initially involves establishing a high density framework map using RH mapping. The framework markers are then used for the identification of bacterial genomic clones covering the chromosome. The bacterial clones are analysed by restriction enzyme fingerprinting and STS-content analysis to identify sequence-ready contigs. Contig gap closure will also be performed by clone walking.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Human, Pair 6/genetics , Sequence Analysis, DNA/methods , Cloning, Molecular , DNA Fingerprinting/methods , DNA, Complementary , Gene Expression , Genetic Markers , Genetic Vectors , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...