Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858857

ABSTRACT

Strigolactones (SL) function as plant hormones in control of multiple aspects of plant development, mostly via the regulation of gene expression. Immediate early-gene regulation by SL remains unexplored due to difficulty in dissecting early from late gene expression responses to SL. We used synthetic SL, rac-GR24 treatment of protoplasts and RNA-seq to explore early SL-induced changes in gene expression over time (5-180 minutes) and discovered rapid, dynamic and SL receptor D14-dependent regulation of gene expression in response to rac-GR24. Importantly, we discovered a significant dependence of SL signalling on chromatin remodelling processes, as the induction of a key SL-induced transcription factor BRANCHED1 requires the SWI/SNF chromatin remodelling ATPase SPLAYED (SYD) and leads to upregulation of a homologue SWI/SNF ATPase BRAHMA. ATAC-seq profiling of genome-wide changes in chromatin accessibility in response to rac-GR24 identified large-scale changes, with over 1400 differentially accessible regions. These changes in chromatin accessibility often precede transcriptional changes and are likely to harbour SL cis-regulatory elements. Importantly, we discovered that this early and extensive modification of the chromatin landscape also requires SYD. This study, therefore, provides evidence that SL signalling requires regulation of chromatin accessibility, and it identifies genomic locations harbouring likely SL cis-regulatory sequences.

2.
Sci Data ; 10(1): 490, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37500689

ABSTRACT

Basic leucine zipper 11 (bZIP11) is a transcription factor that is activated under low energy conditions in plants and plays a crucial role in enabling plants to adapt to starvation situations. Although previous results indicate that bZIP11 regulates chromatin accessibility based on evidence obtained from single genomic loci, to what extent this transcription factor regulates the chromatin landscape at the whole genome level remains unknown. Here we addressed this by performing an ATAC-seq (Assay for Transposase-Accessible Chromatin with high-throughput sequencing) on Arabidopsis thaliana (Arabidopsis) leaf protoplasts to obtain a profile of chromatin patterning in response upon bZIP11 induction. We identified, on average, 10,000 differentially accessible regions upon bZIP11 induction, corresponding to over 8,420 different genes out of the 25,000 genes present in the Arabidopsis genome. Our study provides a resource for understanding how bZIP11 regulates the genome at the chromatin level and provides an example of the impact of a single transcription factor on a whole plant genome.


Subject(s)
Arabidopsis , Chromatin , Arabidopsis/genetics , Chromatin/genetics , Chromatin Immunoprecipitation Sequencing , Genome, Plant , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Transcription Factors/genetics
3.
Nat Plants ; 7(11): 1443-1444, 2021 11.
Article in English | MEDLINE | ID: mdl-34764441
SELECTION OF CITATIONS
SEARCH DETAIL
...