Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Trends Immunol ; 45(6): 403-405, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38760304

ABSTRACT

Recent studies have identified Cys191 in gasdermin D (GSDMD) as a highly targeted regulatory module controlling pyroptosis. Using chemical biology and genetic models, Du, Healy et al. recently identified GSDMD palmitoylation as a key regulatory step in GSDMD activation.


Subject(s)
Intracellular Signaling Peptides and Proteins , Lipoylation , Phosphate-Binding Proteins , Humans , Phosphate-Binding Proteins/metabolism , Animals , Intracellular Signaling Peptides and Proteins/metabolism , Pyroptosis , Gasdermins
2.
Cell Chem Biol ; 31(5): 830-832, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759615

ABSTRACT

The rise of immunotherapy and mRNA vaccines has underscored the power of modulating the immune system for a desired response. In this Voices piece, the Cell Chemical Biology editors ask researchers from a range of backgrounds: what are some major challenges and opportunities facing the field in coming years?


Subject(s)
Immune System , Immunotherapy , Humans , Immune System/immunology , Immune System/metabolism , mRNA Vaccines/immunology
3.
Nat Cell Biol ; 26(3): 450-463, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38326554

ABSTRACT

Memory CD8+ T cells play a crucial role in infection and cancer and mount rapid responses to repeat antigen exposure. Although memory cell transcriptional programmes have been previously identified, the regulatory mechanisms that control the formation of CD8+ T cells have not been resolved. Here we report ECSIT as an essential mediator of memory CD8+ T cell differentiation. Ablation of ECSIT in T cells resulted in loss of fumarate synthesis and abrogated TCF-1 expression via demethylation of the TCF-1 promoter by the histone demethylase KDM5, thereby impairing memory CD8+ T cell development in a cell-intrinsic manner. In addition, ECSIT expression correlated positively with stem-like memory progenitor exhausted CD8+ T cells and the survival of patients with cancer. Our study demonstrates that ECSIT-mediated fumarate synthesis stimulates TCF-1 activity and memory CD8+ T cell development during viral infection and tumorigenesis and highlights the utility of therapeutic fumarate analogues and PD-L1 inhibition for tumour immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Virus Diseases , Humans , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Transformation, Neoplastic/metabolism , Promoter Regions, Genetic , Virus Diseases/metabolism
4.
Proc Natl Acad Sci U S A ; 120(47): e2308355120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37963251

ABSTRACT

A detailed understanding of the innate immune mechanisms involved in restricting SARS-CoV-2 infection and how the virus disrupts these processes could reveal new strategies to boost antiviral mechanisms and develop therapeutics for COVID-19. Here, we identify cellular nucleic acid-binding protein (CNBP) as a key host factor controlling SARS-CoV-2 infection. In response to RNA-sensing pathways, CNBP is phosphorylated and translocates from the cytosol to the nucleus where it binds to the interferon-ß enhancer to initiate transcription. Because SARS-CoV-2 evades immune detection by the host's RNA-sensing pathways, CNBP is largely retained in the cytosol where it restricts SARS-CoV-2 directly, leading to a battle between the host and SARS-CoV-2 that extends beyond antiviral immune signaling pathways. We further demonstrated that CNBP binds SARS-CoV-2 viral RNA directly and competes with the viral nucleocapsid protein to prevent viral RNA and nucleocapsid protein from forming liquid-liquid phase separation (LLPS) condensates critical for viral replication. Consequently, cells and animals lacking CNBP have higher viral loads, and CNBP-deficient mice succumb rapidly to infection. Altogether, these findings identify CNBP as a key antiviral factor for SARS-CoV-2, functioning both as a regulator of antiviral IFN gene expression and a cell-intrinsic restriction factor that disrupts LLPS to limit viral replication and spread. In addition, our studies also highlight viral condensates as important targets and strategies for the development of drugs to combat COVID-19.


Subject(s)
COVID-19 , Interferons , Animals , Mice , Nucleocapsid Proteins , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/physiology , Transcription Factors , Virus Replication
5.
J Am Chem Soc ; 145(37): 20273-20288, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37695732

ABSTRACT

The cGMP-AMP Synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway plays a critical role in sensing dsDNA localized to the cytosol, resulting in the activation of a robust inflammatory response. While cGAS-STING signaling is essential for antiviral immunity, aberrant STING activation is observed in amyotrophic lateral sclerosis (ALS), lupus, and autoinflammatory diseases such as Aicardi-Goutières syndrome (AGS) and STING associated vasculopathy with onset in infancy (SAVI). Significant efforts have therefore focused on the development of STING inhibitors. In a concurrent submission, we reported that BB-Cl-amidine inhibits STING-dependent signaling in the nanomolar range, both in vitro and in vivo. Considering this discovery, we sought to generate analogs with higher potency and proteome-wide selectivity. Herein, we report the development of LB244, which displays nanomolar potency and inhibits STING signaling with markedly enhanced proteome-wide selectivity. Moreover, LB244 mirrored the efficacy of BB-Cl-amidine in vivo. In summary, our data identify novel chemical entities that inhibit STING signaling and provide a scaffold for the development of therapeutics for treating STING-dependent inflammatory diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Autoimmune Diseases of the Nervous System , Humans , Proteome , Antiviral Agents , Cyclic GMP , Nucleotidyltransferases
6.
Trends Immunol ; 44(10): 760-762, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37718174

ABSTRACT

Recent studies have characterized ancient forms of cyclic GMP-AMP (cGAMP) synthase (cGAS)-like receptors (cGLRs) in bacterial and Drosophila immunity. Using bioinformatics and biochemical screening, Li et al. recently constructed and characterized >3000 cGLRs to reveal conserved mechanisms of nucleic acid sensing across animal immunity.

7.
Proc Natl Acad Sci U S A ; 120(33): e2305420120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549268

ABSTRACT

Stimulator of interferon genes (STING) is an essential adaptor protein required for the inflammatory response to cytosolic DNA. dsDNA activates cGAS to generate cGAMP, which binds and activates STING triggering a conformational change, oligomerization, and the IRF3- and NFκB-dependent transcription of type I Interferons (IFNs) and inflammatory cytokines, as well as the activation of autophagy. Aberrant activation of STING is now linked to a growing number of both rare as well as common chronic inflammatory diseases. Here, we identify and characterize a potent small-molecule inhibitor of STING. This compound, BB-Cl-amidine inhibits STING signaling and production of type I IFNs, IFN-stimulated genes (ISGs) and NFκB-dependent cytokines, but not other pattern recognition receptors. In vivo, BB-Cl-amidine alleviated pathology resulting from accrual of cytosolic DNA in Trex-1 mutant mice. Mechanistically BB-Cl-amidine inhibited STING oligomerization through modification of Cys148. Collectively, our work uncovers an approach to inhibit STING activation and highlights the potential of this strategy for the treatment of STING-driven inflammatory diseases.


Subject(s)
Interferon Type I , Membrane Proteins , Mice , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Signal Transduction/physiology , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Interferon Type I/metabolism , NF-kappa B/metabolism , DNA
8.
Cell Metab ; 35(8): 1441-1456.e9, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37494932

ABSTRACT

This study reveals a previously uncharacterized mechanism to restrict intestinal inflammation via a regulatory RNA transcribed from a noncoding genomic locus. We identified a novel transcript of the lncRNA HOXA11os specifically expressed in the distal colon that is reduced to undetectable levels in colitis. HOXA11os is localized to mitochondria under basal conditions and interacts with a core subunit of complex 1 of the electron transport chain (ETC) to maintain its activity. Deficiency of HOXA11os in colonic myeloid cells results in complex I deficiency, dysfunctional oxidative phosphorylation (OXPHOS), and the production of mitochondrial reactive oxygen species (mtROS). As a result, HOXA11os-deficient mice develop spontaneous intestinal inflammation and are hypersusceptible to colitis. Collectively, these studies identify a new regulatory axis whereby a lncRNA maintains intestinal homeostasis and restricts inflammation in the colon through the regulation of complex I activity.


Subject(s)
Colitis , RNA, Long Noncoding , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Colitis/genetics , Colitis/metabolism , Inflammation/metabolism , Mitochondria/genetics , Homeostasis , Intestinal Mucosa/metabolism
9.
Circ Res ; 132(10): 1272-1289, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37167360

ABSTRACT

COVID-19 is characterized by dysregulated thrombosis and coagulation that can increase mortality in patients. Platelets are fast responders to pathogen presence, alerting the surrounding immune cells and contributing to thrombosis and intravascular coagulation. The SARS-CoV-2 genome has been found in platelets from patients with COVID-19, and its coverage varies according to the method of detection, suggesting direct interaction of the virus with these cells. Antibodies against Spike and Nucleocapsid have confirmed this platelet-viral interaction. This review discusses the immune, prothrombotic, and procoagulant characteristics of platelets observed in patients with COVID-19. We outline the direct and indirect interaction of platelets with SARS-CoV-2, the contribution of the virus to programmed cell death pathway activation in platelets and the consequent extracellular vesicle release. We discuss platelet activation and immunothrombosis in patients with COVID-19, the effect of Spike on platelets, and possible activation of platelets by classical platelet activation triggers as well as contribution of platelets to complement activation. As COVID-19-mediated thrombosis and coagulation are still not well understood in vivo, we discuss available murine models and mouse adaptable strains.


Subject(s)
COVID-19 , Thrombosis , Mice , Animals , COVID-19/metabolism , SARS-CoV-2 , Blood Platelets/metabolism , Platelet Activation
10.
Methods Mol Biol ; 2641: 125-133, 2023.
Article in English | MEDLINE | ID: mdl-37074646

ABSTRACT

Gasdermin D is an essential mediator of pyroptosis. Under resting conditions gasdermin D is inactive in the cytosol. Following inflammasome activation, gasdermin D undergoes processing and oligomerization to create membrane pores and induce pyroptosis to release mature IL-1 and IL-18. Biochemical methods for the analysis of gasdermin D activation states are important for assessing gasdermin D function. Here we describe the biochemical methods for assessing gasdermin D processing and oligomerization and its inactivation using small molecule inhibitors.


Subject(s)
Gasdermins , Intracellular Signaling Peptides and Proteins , Phosphate-Binding Proteins , Macrophages/metabolism , Pyroptosis/physiology , Inflammasomes/metabolism
11.
Proc Natl Acad Sci U S A ; 120(11): e2219523120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36893269

ABSTRACT

The continuous evolution of SARS-CoV-2 variants complicates efforts to combat the ongoing pandemic, underscoring the need for a dynamic platform for the rapid development of pan-viral variant therapeutics. Oligonucleotide therapeutics are enhancing the treatment of numerous diseases with unprecedented potency, duration of effect, and safety. Through the systematic screening of hundreds of oligonucleotide sequences, we identified fully chemically stabilized siRNAs and ASOs that target regions of the SARS-CoV-2 genome conserved in all variants of concern, including delta and omicron. We successively evaluated candidates in cellular reporter assays, followed by viral inhibition in cell culture, with eventual testing of leads for in vivo antiviral activity in the lung. Previous attempts to deliver therapeutic oligonucleotides to the lung have met with only modest success. Here, we report the development of a platform for identifying and generating potent, chemically modified multimeric siRNAs bioavailable in the lung after local intranasal and intratracheal delivery. The optimized divalent siRNAs showed robust antiviral activity in human cells and mouse models of SARS-CoV-2 infection and represent a new paradigm for antiviral therapeutic development for current and future pandemics.


Subject(s)
COVID-19 , Humans , Animals , Mice , RNA, Small Interfering/genetics , COVID-19/therapy , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Oligonucleotides , Lung
12.
Biomolecules ; 12(12)2022 11 22.
Article in English | MEDLINE | ID: mdl-36551159

ABSTRACT

Secretory leucoprotease inhibitor (SLPI) has multifaceted functions, including inhibition of protease activity, antimicrobial functions, and anti-inflammatory properties. In this study, we show that SLPI plays a role in controlling pulmonary Pseudomonas aeruginosa infection. Mice lacking SLPI were highly susceptible to P. aeruginosa infection, however there was no difference in bacterial burden. Utilising a model of P. aeruginosa LPS-induced lung inflammation, human recombinant SLPI (hrSLPI) administered intraperitoneally suppressed the recruitment of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and resulted in reduced BALF and serum levels of inflammatory cytokines and chemokines. This anti-inflammatory effect of hrSLPI was similarly demonstrated in a systemic inflammation model induced by intraperitoneal injection of LPS from various bacteria or lipoteichoic acid, highlighting the broad anti-inflammatory properties of hrSLPI. Moreover, in bone-marrow-derived macrophages, hrSLPI reduced LPS-induced phosphorylation of p-IkB-α, p-IKK-α/ß, p-P38, demonstrating that the anti-inflammatory effect of hrSLPI was due to the inhibition of the NFκB and MAPK pathways. In conclusion, administration of hrSLPI attenuates excessive inflammatory responses and is therefore, a promising strategy to target inflammatory diseases such as acute respiratory distress syndrome or sepsis and could potentially be used to augment antibiotic treatment.


Subject(s)
Inflammation , Pseudomonas Infections , Secretory Leukocyte Peptidase Inhibitor , Animals , Humans , Mice , Inflammation/metabolism , Inflammation/microbiology , Lipopolysaccharides , Pseudomonas Infections/metabolism , Pseudomonas Infections/therapy , Secretory Leukocyte Peptidase Inhibitor/administration & dosage , Secretory Leukocyte Peptidase Inhibitor/metabolism , Recombinant Proteins/administration & dosage
13.
Cell Rep ; 41(4): 111553, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36288704

ABSTRACT

Tumor microenvironments (TMEs) require co-operation of innate and adaptive immune cells, which influence tumor progression and immunotherapy. Caspase-activated gasdermins facilitate tumor death and promote anti-tumor immunity. How pyroptosis in immune cells affects the TME remains unclear. TME expression of gasdermin D (GSDMD) is highly expressed in antigen-presenting cells (APCs) and correlates with immune checkpoint signatures. Through conditional deletion of GSDMD, we demonstrate that GSDMD in TME APCs restricts anti-tumor immunity during PD-L1 inhibition. Loss of GSDMD in APCs enhances interferon-stimulated genes (ISGs), thereby promoting CD8+ T cell activation in a cGAS-dependent manner. Moreover, pharmacological inhibition of GSDMD-mediated pyroptosis and PD-L1 improve anti-tumor immunity, highlighting the potential of combining GSDMD/PD-L1 inhibition for immunotherapy as a therapeutic strategy.


Subject(s)
B7-H1 Antigen , Tumor Microenvironment , Caspases , Interferons , Nucleotidyltransferases
14.
Front Immunol ; 13: 995412, 2022.
Article in English | MEDLINE | ID: mdl-36172366

ABSTRACT

Anti-COVID antibody therapeutics have been developed but not widely used due to their high cost and escape of neutralization from the emerging variants. Here, we describe the development of VHH-IgA1.1, a nanobody IgA fusion molecule as an inhalable, affordable and less invasive prophylactic and therapeutic treatment against SARS-CoV-2 Omicron variants. VHH-IgA1.1 recognizes a conserved epitope of SARS-CoV-2 spike protein Receptor Binding Domain (RBD) and potently neutralizes major global SARS-CoV-2 variants of concern (VOC) including the Omicron variant and its sub lineages BA.1.1, BA.2 and BA.2.12.1. VHH-IgA1.1 is also much more potent against Omicron variants as compared to an IgG Fc fusion construct, demonstrating the importance of IgA mediated mucosal protection for Omicron infection. Intranasal administration of VHH-IgA1.1 prior to or after challenge conferred significant protection from severe respiratory disease in K18-ACE2 transgenic mice infected with SARS-CoV-2 VOC. More importantly, for cost-effective production, VHH-IgA1.1 produced in Pichia pastoris had comparable potency to mammalian produced antibodies. Our study demonstrates that intranasal administration of affordably produced VHH-IgA fusion protein provides effective mucosal immunity against infection of SARS-CoV-2 including emerging variants.


Subject(s)
COVID-19 , Immunoglobulin A , SARS-CoV-2 , Single-Domain Antibodies , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral/pharmacology , Epitopes/chemistry , Humans , Immunoglobulin A/pharmacology , Immunoglobulin G , Mice , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus
15.
Res Sq ; 2022 May 02.
Article in English | MEDLINE | ID: mdl-35547851

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades antiviral immunity through the expression of viral proteins that block detection, signaling, interferon (IFN) induction, and IFN-stimulated gene (ISG) expression1, 2. Weak induction of type I IFNs is associated with a hyperinflammatory response in patients that develop severe COVID-193, 4, 5. Here we uncover a role for cellular nucleic acid-binding protein (CNBP) in restricting SARS-CoV-2. Typically, CNBP resides in the cytosol and, in response to RNA sensing pathways, undergoes phosphorylation, nuclear translocation, and IFNß enhancer DNA binding to turn on IFNß gene transcription. In SARS-CoV-2-infected cells CNBP coordinates IFNß gene transcription. In addition, CNBP binds SARS-CoV-2 viral RNA directly. CNBP competes with the nucleocapsid (N) protein and prevents viral RNA and nucleocapsid protein from undergoing liquid-liquid phase separation (LLPS) forming condensates critical for viral replication. Consequently, cells and animals lacking CNBP have higher viral loads and CNBP-deficient mice succumb rapidly to infection. Altogether, these findings identify CNBP as a key antiviral factor for SARS-CoV-2, functioning both as a regulator of antiviral IFN gene expression and a cell intrinsic restriction factor that disrupts LLPS to limit viral replication and spread.

16.
PLoS One ; 16(10): e0258989, 2021.
Article in English | MEDLINE | ID: mdl-34705862

ABSTRACT

Toll-like receptors (TLRs) are highly-conserved pattern recognition receptors that mediate innate immune responses to invading pathogens and endogenous danger signals released from damaged and dying cells. Activation of TLRs trigger downstream signaling cascades, that culminate in the activation of interferon regulatory factors (IRFs), which subsequently leads to type I interferon (IFN) response. In the current study, we sought to expand the scope of gene expression changes in THP1-derived macrophages upon TLR4 activation and to identify interferon-stimulated genes. RNA-seq analysis led to the identification of several known and novel differentially expressed genes, including CMPK2, particularly in association with type I IFN signaling. We performed an in-depth characterization of CMPK2 expression, a nucleoside monophosphate kinase that supplies intracellular UTP/CTP for nucleic acid synthesis in response to type I IFN signaling in macrophages. CMPK2 was significantly induced at both RNA and protein levels upon stimulation with TLR4 ligand-LPS and TLR3 ligand-Poly (I:C). Confocal microscopy and subcellular fractionation indicated CMPK2 localization in both cytoplasm and mitochondria of THP-1 macrophages. Furthermore, neutralizing antibody-based inhibition of IFNAR receptor in THP-1 cells and BMDMs derived from IFNAR KO and IRF3 KO knockout mice further revealed that CMPK2 expression is dependent on LPS/Poly (I:C) mediated IRF3- type I interferon signaling. In summary, our findings suggest that CMPK2 is a potential interferon-stimulated gene in THP-1 macrophages and that CMPK2 may facilitate IRF3- type I IFN-dependent anti-bacterial and anti-viral roles.


Subject(s)
Gene Expression/immunology , Interferon Regulatory Factor-3/immunology , Macrophages/metabolism , Nucleoside-Phosphate Kinase/immunology , Receptor, Interferon alpha-beta/immunology , Animals , Humans , Macrophages/cytology , Mice , Mice, Knockout , THP-1 Cells
18.
Immunity ; 54(6): 1137-1153.e8, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34051146

ABSTRACT

Alterations in the cGAS-STING DNA-sensing pathway affect intestinal homeostasis. We sought to delineate the functional role of STING in intestinal inflammation. Increased STING expression was a feature of intestinal inflammation in mice with colitis and in humans afflicted with inflammatory bowel disease. Mice bearing an allele rendering STING constitutively active exhibited spontaneous colitis and dysbiosis, as well as progressive chronic intestinal inflammation and fibrosis. Bone marrow chimera experiments revealed STING accumulation in intestinal macrophages and monocytes as the initial driver of inflammation. Depletion of Gram-negative bacteria prevented STING accumulation in these cells and alleviated intestinal inflammation. STING accumulation occurred at the protein rather than transcript level, suggesting post-translational stabilization. We found that STING was ubiquitinated in myeloid cells, and this K63-linked ubiquitination could be elicited by bacterial products, including cyclic di-GMP. Our findings suggest a positive feedback loop wherein dysbiosis foments the accumulation of STING in intestinal myeloid cells, driving intestinal inflammation.


Subject(s)
Colitis/immunology , Dysbiosis/immunology , Immunity, Innate/immunology , Membrane Proteins/immunology , Myeloid Cells/immunology , Ubiquitination/immunology , Animals , Case-Control Studies , Female , Humans , Inflammation/immunology , Intestines/immunology , Male , Mice , Mice, Inbred C57BL , Monocytes/immunology
19.
JCI Insight ; 6(12)2021 06 22.
Article in English | MEDLINE | ID: mdl-34032637

ABSTRACT

Evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) is a protein with roles in early development, activation of the transcription factor NF-κB, and production of mitochondrial reactive oxygen species (mROS) that facilitates clearance of intracellular bacteria like Salmonella. ECSIT is also an important assembly factor for mitochondrial complex I. Unlike the murine form of Ecsit (mEcsit), we demonstrate here that human ECSIT (hECSIT) is highly labile. To explore whether the instability of hECSIT affects functions previously ascribed to its murine counterpart, we created a potentially novel transgenic mouse in which the murine Ecsit gene is replaced by the human ECSIT gene. The humanized mouse has low levels of hECSIT protein, in keeping with its intrinsic instability. Whereas low-level expression of hECSIT was capable of fully compensating for mEcsit in its roles in early development and activation of the NF-κB pathway, macrophages from humanized mice showed impaired clearance of Salmonella that was associated with reduced production of mROS. Notably, severe cardiac hypertrophy was manifested in aging humanized mice, leading to premature death. The cellular and molecular basis of this phenotype was delineated by showing that low levels of human ECSIT protein led to a marked reduction in assembly and activity of mitochondrial complex I with impaired oxidative phosphorylation and reduced production of ATP. Cardiac tissue from humanized hECSIT mice also showed reduced mitochondrial fusion and more fission but impaired clearance of fragmented mitochondria. A cardiomyocyte-intrinsic role for Ecsit in mitochondrial function and cardioprotection is also demonstrated. We also show that cardiac fibrosis and damage in humans correlated with low expression of human ECSIT. In summary, our findings identify a role for ECSIT in cardioprotection, while generating a valuable experimental model to study mitochondrial dysfunction and cardiac pathophysiology.


Subject(s)
Adaptor Proteins, Signal Transducing , Cardiomegaly , Myocardium , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cells, Cultured , Humans , Macrophages/metabolism , Mice , Mitochondria/metabolism , Myocardium/metabolism , Myocardium/pathology , NF-kappa B/genetics , NF-kappa B/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...