Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 18429, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31804543

ABSTRACT

Hydrophobic zeolites are nanoporous materials that are attracting an increasing interest, especially for catalysis, desalination, energy storage and biomedical applications. Nevertheless, a more profound understanding and control of water infiltration in their nanopores is still desirable to rationally design zeolite-based materials with tailored properties. In this work, both atomistic simulations and previous experimental data are employed to investigate water infiltration in hydrophobic MFI zeolites with different concentration of hydrophilic defects. Results show that limited concentrations of defects (e.g. 1%) induce a change in the shape of infiltration isotherms (from type-V to type-I), which denotes a sharp passage from typical hydrophobic to hydrophilic behavior. A correlation parametrized on both energy and geometric characteristics of the zeolite (infiltration model) is then adopted to interpolate the infiltration isotherms data by means of a limited number of physically-meaningful parameters. Finally, the infiltration model is combined with the water-zeolite interaction energy computed by simulations to correlate the water intrusion mechanism with the atomistic details of the zeolite crystal, such as defects concentration, distribution and hydrophilicity. The suggested methodology may allow a faster (more than one order of magnitude) and more systematic preliminary computational screening of innovative zeolite-based materials for energy storage, desalination and biomedical purposes.

2.
Nanotechnology ; 28(50): 505703, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29091586

ABSTRACT

The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

3.
Nat Commun ; 7: 12762, 2016 10 03.
Article in English | MEDLINE | ID: mdl-27694935

ABSTRACT

A comprehensive understanding of molecular transport within nanoporous materials remains elusive in a broad variety of engineering and biomedical applications. Here, experiments and atomistic simulations are synergically used to elucidate the non-trivial interplay between nanopore hydrophilicity and surface barriers on the overall water transport through zeolite crystals. At these nanometre-length scales, these results highlight the dominating effect of surface imperfections with reduced permeability on the overall water transport. A simple diffusion resistance model is shown to be sufficient to capture the effects of both intracrystalline and surface diffusion resistances, thus properly linking simulation to experimental evidence. This work suggests that future experimental work should focus on eliminating/overcoming these surface imperfections, which promise an order of magnitude improvement in permeability.

4.
Langmuir ; 30(22): 6446-53, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24810585

ABSTRACT

The subnanometer pore structure of zeolites and other microporous materials has been proposed to act as a molecular sieve for various water separation technologies. However, due to the increased interaction between the solid and water in these nanoconfined spaces, it is unclear which type of interface, be it hydrophilic or hydrophobic, offers an advantageous medium for enhancing transport properties. In this work, we probe the role of hydrophilic defects on the transport of water inside the microporous hydrophobic MFI zeolite pore structure via combined sorption and high-pressure infiltration experiments. While the inclusion of defects was observed to increase the amount of water within the zeolite pore network by up to 7 times at the saturation pressure, the diffusivity of this infiltrated water was lowered by up to 2 orders of magnitude in comparison to that of water within the nearly defect-free hydrophobic MFI zeolite. Subsequently, the permeability of water within the more defective MFI zeolite was an order of magnitude lower than that of the nearly defect-free zeolite. The results from these experiments suggest that the intrinsic hydrophobic pore structure of MFI zeolites can facilitate faster water transport due to the decreased attraction between the water and the defect-free surface. While the strong attraction of water to the defects allows for water to infiltrate the porous network at lower pressures, the results suggest that this strong attraction decreases the mobility of the infiltrated water. The insights gained from this study can be utilized to improve the design of future membranes for water desalination and other separation techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...