Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mutat ; 30(4): 625-32, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19191320

ABSTRACT

The evolutionary and biomedical importance of differential mRNA splicing is well established. Numerous studies have assessed patterns of differential splicing in different genes and correlated these patterns to the genotypes for adjacent single-nucleotide polymorphisms (SNPs). Here, we have chosen a reverse approach and screened dbSNP for common SNPs at either canonical splice sites or exonic splice enhancers (ESEs) that would be classified as putatively splicing-relevant by bioinformatic tools. The 223 candidate SNPs retrieved from dbSNP were experimentally tested using a previously established panel of 92 matching DNAs and cDNAs. For each SNP, 16 cDNAs providing a balanced representation of the genotypes at the respective SNP were investigated by nested RT-PCR and subsequent sequencing. Putative allele-dependent splicing was verified by the cloning of PCR products. The positive predictive value of the bioinformatics tools turned out to be low, ranging from 0% for ESEfinder to 9% (in the case of acceptor-site SNPs) for a recently reported neural network. The results highlight the need for a better understanding of the sequence characteristics of functional splice-sites to improve our ability to predict in silico the splicing relevance of empirically observed DNA sequence variants.


Subject(s)
Polymorphism, Single Nucleotide , RNA Precursors/genetics , RNA Splicing/genetics , DNA/genetics , DNA, Complementary/genetics , Genotype , Humans , Neural Networks, Computer , Polymerase Chain Reaction/methods
2.
Hum Mutat ; 28(2): 150-8, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17001642

ABSTRACT

Although single base-pair substitutions in splice junctions constitute at least 10% of all mutations causing human inherited disease, the factors that determine their phenotypic consequences at the RNA level remain to be fully elucidated. Employing a neural network for splice-site recognition, we performed a meta-analysis of 478 disease-associated splicing mutations, in 38 different genes, for which detailed laboratory-based mRNA phenotype assessment had been performed. Inspection of the +/-50-bp DNA sequence context of the mutations revealed that exon skipping was the preferred phenotype when the immediate vicinity of the affected exon-intron junctions was devoid of alternative splice-sites. By contrast, in the presence of at least one such motif, cryptic splice-site utilization, became more prevalent. This association was, however, confined to donor splice-sites. Outside the obligate dinucleotide, the spatial distribution of pathological mutations was found to differ significantly from that of SNPs. Whereas disease-associated lesions clustered at positions -1 and +3 to +6 for donor sites and -3 for acceptor sites, SNPs were found to be almost evenly distributed over all sequence positions considered. When all putative missense mutations in the vicinity of splice-sites were extracted from the Human Gene Mutation Database for the 38 studied genes, a significantly higher proportion of changes at donor sites (37/152; 24.3%) than at acceptor splice-sites (1/142; 0.7%) was found to reduce the neural network signal emitted by the respective splice-site. Based upon these findings, we estimate that some 1.6% of disease-causing missense substitutions in human genes are likely to affect the mRNA splicing phenotype. Taken together, our results are consistent with correct donor splice-site recognition being a key step in exon recognition.


Subject(s)
Exons , Introns , Point Mutation , RNA Splicing/genetics , RNA, Messenger/metabolism , DNA Mutational Analysis , Databases, Nucleic Acid , Genetic Predisposition to Disease , Humans , Models, Genetic , Mutation, Missense , Neural Networks, Computer , Phenotype , Polymorphism, Single Nucleotide , RNA Splice Sites
SELECTION OF CITATIONS
SEARCH DETAIL
...