Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Biomech Model Mechanobiol ; 21(4): 1117-1131, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35534762

ABSTRACT

Recent reports of adverse health effects (e.g., capsular contracture, lymphoma) linked to the absence or presence of texture on soft-tissue implants (e.g., breast implants) suggest surface topography may have pathological impact(s). We propose that surface texture influences the transfer of displacements, experienced by an implant undergoing micromotion, to surrounding interfacial extracellular matrix, which in turn impacts the activity of the resident cells and is based on degree of tissue integration. We hypothesize that transfer of displacements due to micromotion promotes interstitial fluid movement that imposes hydrodynamic stresses (pressures, shear stresses) on cells residing in the interfacial tissues and impacts their activity. To address this, we developed a computer simulation to approximate hydrodynamic stresses in the interstitial environment of saturated poroelastic tissues (model soft-tissue implantation sites) generated from oscillatory implant micromotion as a function of the magnitude of translational displacement, direction of motion, degree of tissue integration, and surface roughness of the implant. Highly integrated implants were predicted to generate the highest fluid shear stresses within model tissues, with oscillatory fluid shear stresses up to 80 dyn/cm2 for a 20-µm displacement. Notably, application of oscillatory 80 dyn/cm2 shear stress to cultured human fibroblasts elicited cell death after 20 h compared to cells maintained under static conditions or exposed to 80 dyn/cm2 steady, unidirectional shear. These results indicate that oscillatory interstitial fluid stresses generated by micromotion of an integrated implant may influence the activity of the surrounding cells and play a role in the body's fibrotic response to textured soft-tissue implants.


Subject(s)
Hydrodynamics , Prostheses and Implants , Computer Simulation , Humans , Motion , Stress, Mechanical
2.
Biomaterials ; 245: 119973, 2020 07.
Article in English | MEDLINE | ID: mdl-32244091

ABSTRACT

The native extracellular matrix (ECM) contains a host of matricellular proteins and bioactive factors that regulate cell behavior, and many ECM components have been leveraged to guide cell fate. However, the large size and chemical characteristics of these constituents complicate their incorporation into biomaterials without interfering with material properties, motivating the need for alternative approaches to regulate cellular responses. Mesenchymal stromal cells (MSCs) can promote osseous regeneration in vivo directly or indirectly through multiple means including (1) secretion of proangiogenic and mitogenic factors to initiate formation of a vascular template and recruit host cells into the tissue site or (2) direct differentiation into osteoblasts. As MSC behavior is influenced by the properties of engineered hydrogels, we hypothesized that the biochemical and biophysical properties of alginate could be manipulated to promote the dual contributions of encapsulated MSCs toward bone formation. We functionalized alginate with QK peptide to enhance proangiogenic factor secretion and RGD to promote adhesion, while biomechanical-mediated osteogenic cues were controlled by modulating viscoelastic properties of the alginate substrate. A 1:1 ratio of QK:RGD resulted in the highest levels of both proangiogenic factor secretion and mineralization in vitro. Viscoelastic alginate outperformed purely elastic gels in both categories, and this effect was enhanced by stiffness up to 20 kPa. Furthermore, viscoelastic constructs promoted vessel infiltration and bone regeneration in a rat calvarial defect over 12 weeks. These data suggest that modulating viscoelastic properties of biomaterials, in conjunction with dual peptide functionalization, can simultaneously enhance multiple aspects of MSC regenerative potential and improve neovascularization of engineered tissues.


Subject(s)
Hydrogels , Mesenchymal Stem Cells , Animals , Cell Differentiation , Osteogenesis , Peptides , Rats , Stromal Cells
3.
Biomaterials ; 189: 1-10, 2019 01.
Article in English | MEDLINE | ID: mdl-30384124

ABSTRACT

The maintenance and direction of stem cell lineage after implantation remains challenging for clinical translation. Aggregation and encapsulation into instructive biomaterials after preconditioning can bolster retention of differentiated phenotypes. Since these procedures do not depend on cell type or lineage, we hypothesized we could use a common, tunable platform to engineer formulations that retain and enhance multiple lineages from different cell populations. To test this, we varied alginate stiffness and adhesive ligand content, then encapsulated spheroids of varying cellularity. We used Design-of-Experiments to determine the effect of these parameters and their interactions on phenotype retention. The combination of parameters leading to maximal differentiation varied with lineage and cell type, inducing a 2-4-fold increase over non-optimized levels. Phenotype was also retained for 4 weeks in a murine subcutaneous model. This widely applicable approach can facilitate translation of cell-based therapies by instructing phenotype in situ without prolonged induction or costly growth factors.


Subject(s)
Alginates/chemistry , Biocompatible Materials/chemistry , Cell Differentiation , Hydrogels/chemistry , Mesenchymal Stem Cells/cytology , Animals , Cells, Cultured , Female , Male , Mesenchymal Stem Cell Transplantation , Mice, SCID , Spheroids, Cellular/cytology
4.
Stem Cells ; 36(9): 1393-1403, 2018 09.
Article in English | MEDLINE | ID: mdl-29968952

ABSTRACT

Cell-based approaches for musculoskeletal tissue repair are limited by poor cell survival and engraftment. Short-term hypoxic preconditioning of mesenchymal stem cells (MSCs) can prolong cell viability in vivo, while the aggregation of MSCs into spheroids increases cell survival, trophic factor secretion, and tissue formation in vivo. We hypothesized that preconditioning MSCs in hypoxic culture before spheroid formation would increase cell viability, proangiogenic potential, and resultant bone repair compared with that of individual MSCs. Human MSCs were preconditioned in 1% O2 in monolayer culture for 3 days (PC3) or kept in ambient air (PC0), formed into spheroids of increasing cell density, and then entrapped in alginate hydrogels. Hypoxia-preconditioned MSC spheroids were more resistant to apoptosis than ambient air controls and this response correlated with duration of hypoxia exposure. Spheroids of the highest cell density exhibited the greatest osteogenic potential in vitro and vascular endothelial growth factor (VEGF) secretion was greatest in PC3 spheroids. PC3 spheroids were then transplanted into rat critical-sized femoral segmental defects to evaluate their potential for bone healing. Spheroid-containing gels induced significantly more bone healing compared with gels containing preconditioned individual MSCs or acellular gels. These data demonstrate that hypoxic preconditioning represents a simple approach for enhancing the therapeutic potential of MSC spheroids when used for bone healing. Stem Cells 2018;36:1393-1403.


Subject(s)
Cell Hypoxia/physiology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Animals , Bone and Bones/cytology , Bone and Bones/metabolism , Cell Culture Techniques , Humans , Male , Rats
5.
J R Soc Interface ; 14(127)2017 02.
Article in English | MEDLINE | ID: mdl-28179546

ABSTRACT

Spheroids formed of mesenchymal stem cells (MSCs) exhibit increased cell survival and trophic factor secretion compared with dissociated MSCs, making them therapeutically advantageous for cell therapy. Presently, there is no consensus for the mechanism of action. Many hypothesize that spheroid formation potentiates cell function by generating a hypoxic core within spheroids of sufficiently large diameters. The purpose of this study was to experimentally determine whether a hypoxic core is generated in MSC spheroids by measuring oxygen tension in aggregates of increasing diameter and correlating oxygen tension values with cell function. MSC spheroids were formed with 15 000, 30 000 or 60 000 cells per spheroid, resulting in radii of 176 ± 8 µm, 251 ± 12 µm and 353 ± 18 µm, respectively. Oxygen tension values coupled with mathematical modelling revealed a gradient that varied less than 10% from the outer diameter within the largest spheroids. Despite the modest radial variance in oxygen tension, cellular metabolism from spheroids significantly decreased as the number of cells and resultant spheroid size increased. This may be due to adaptive reductions in matrix deposition and packing density with increases in spheroid diameter, enabling spheroids to avoid the formation of a hypoxic core. Overall, these data provide evidence that the enhanced function of MSC spheroids is not oxygen mediated.


Subject(s)
Mesenchymal Stem Cells/metabolism , Oxygen/metabolism , Spheroids, Cellular/metabolism , Humans , Mesenchymal Stem Cells/cytology , Spheroids, Cellular/cytology
6.
Ann Biomed Eng ; 45(1): 45-57, 2017 01.
Article in English | MEDLINE | ID: mdl-27295184

ABSTRACT

The treatment of craniofacial defects can present many challenges due to the variety of tissue-specific requirements and the complexity of anatomical structures in that region. 3D-printing technologies provide clinicians, engineers and scientists with the ability to create patient-specific solutions for craniofacial defects. Currently, there are three key strategies that utilize these technologies to restore both appearance and function to patients: rehabilitation, reconstruction and regeneration. In rehabilitation, 3D-printing can be used to create prostheses to replace or cover damaged tissues. Reconstruction, through plastic surgery, can also leverage 3D-printing technologies to create custom cutting guides, fixation devices, practice models and implanted medical devices to improve patient outcomes. Regeneration of tissue attempts to replace defects with biological materials. 3D-printing can be used to create either scaffolds or living, cellular constructs to signal tissue-forming cells to regenerate defect regions. By integrating these three approaches, 3D-printing technologies afford the opportunity to develop personalized treatment plans and design-driven manufacturing solutions to improve aesthetic and functional outcomes for patients with craniofacial defects.


Subject(s)
Bone Regeneration , Facial Bones/injuries , Facial Injuries , Plastic Surgery Procedures/methods , Tissue Engineering , Animals , Facial Injuries/rehabilitation , Facial Injuries/surgery , Humans , Printing, Three-Dimensional
7.
ACS Biomater Sci Eng ; 2(10): 1806-1816, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27942578

ABSTRACT

Tissue-engineered approaches to regenerate bone in the craniomaxillofacial region utilize biomaterial scaffolds to provide structural and biological cues to stem cells to stimulate osteogenic differentiation. Bioactive scaffolds are typically comprised of natural components but often lack the manufacturability of synthetic materials. To circumvent this trade-off, we 3D printed materials comprised of decellularized bone (DCB) matrix particles combined with polycaprolactone (PCL) to create novel hybrid DCB:PCL scaffolds for bone regeneration. Hybrid scaffolds were readily printable at compositions of up to 70% bone by mass and displayed robust mechanical properties. Assessments of surface features revealed both collagenous and mineral components of bone were present. Qualitative and quantitative assessments showed increased surface roughness relative to that of pure PCL scaffolds. These findings correlated with enhanced cell adhesion on hybrid surfaces relative to that on pure surfaces. Human adipose-derived stem cells (hASCs) cultured in DCB:PCL scaffolds without soluble osteogenic cues exhibited significant upregulation of osteogenic genes in hybrid scaffolds relative to pure PCL scaffolds. In the presence of soluble phosphate, hybrid scaffolds resulted in increased calcification. The hASC-seeded scaffolds were implanted into critical-sized murine calvarial defects and yielded greater bone regeneration in DCB:PCL scaffolds compared to that in PCL-only at 1 and 3 months post-transplantation. Taken together, these results demonstrate that 3D printed DCB:PCL scaffolds might be effective for stimulating bone regeneration.

8.
Stem Cells ; 33(9): 2773-84, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26013357

ABSTRACT

Tissue engineering using mesenchymal stem cells (MSCs) holds great promise for regenerating critically sized bone defects. While the bone marrow-derived MSC is the most widely studied stromal/stem cell type for this application, its rarity within bone marrow and painful isolation procedure have motivated investigation of alternative cell sources. Adipose-derived stromal/stem cells (ASCs) are more abundant and more easily procured; furthermore, they also possess robust osteogenic potency. While these two cell types are widely considered very similar, there is a growing appreciation of possible innate differences in their biology and response to growth factors. In particular, reports indicate that their osteogenic response to platelet-derived growth factor BB (PDGF-BB) is markedly different: MSCs responded negatively or not at all to PDGF-BB while ASCs exhibited enhanced mineralization in response to physiological concentrations of PDGF-BB. In this study, we directly tested whether a fundamental difference existed between the osteogenic responses of MSCs and ASCs to PDGF-BB. MSCs and ASCs cultured under identical osteogenic conditions responded disparately to 20 ng/ml of PDGF-BB: MSCs exhibited no difference in mineralization while ASCs produced more calcium per cell. siRNA-mediated knockdown of PDGFRß within ASCs abolished their ability to respond to PDGF-BB. Gene expression was also different; MSCs generally downregulated and ASCs generally upregulated osteogenic genes in response to PDGF-BB. ASCs transduced to produce PDGF-BB resulted in more regenerated bone within a critically sized murine calvarial defect compared to control ASCs, indicating PDGF-BB used specifically in conjunction with ASCs might enhance tissue engineering approaches for bone regeneration.


Subject(s)
Adipose Tissue/cytology , Adipose Tissue/physiology , Bone Marrow/physiology , Mesenchymal Stem Cells/physiology , Osteogenesis/physiology , Proto-Oncogene Proteins c-sis/pharmacology , Adipose Tissue/drug effects , Adult , Animals , Becaplermin , Bone Marrow/drug effects , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Female , Humans , Male , Mesenchymal Stem Cells/drug effects , Mice , Mice, Knockout , Middle Aged , Osteogenesis/drug effects , Skull/cytology , Skull/drug effects , Skull/physiology , Tissue Engineering/methods
9.
Nat Rev Endocrinol ; 11(3): 140-50, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25560703

ABSTRACT

Stem-cell-mediated bone repair has been used in clinical trials for the regeneration of large craniomaxillofacial defects, to slow the process of bone degeneration in patients with osteonecrosis of the femoral head and for prophylactic treatment of distal tibial fractures. Successful regenerative outcomes in these investigations have provided a solid foundation for wider use of stromal cells in skeletal repair therapy. However, employing stromal cells to facilitate or enhance bone repair is far from being adopted into clinical practice. Scientific, technical, practical and regulatory obstacles prevent the widespread therapeutic use of stromal cells. Ironically, one of the major challenges lies in the limited understanding of the mechanisms via which transplanted cells mediate regeneration. Animal models have been used to provide insight, but these models largely fail to reproduce the nuances of human diseases and bone defects. Consequently, the development of targeted approaches to optimize cell-mediated outcomes is difficult. In this Review, we highlight the successes and challenges reported in several clinical trials that involved the use of bone-marrow-derived mesenchymal or adipose-tissue-derived stromal cells. We identify several obstacles blocking the mainstream use of stromal cells to enhance skeletal repair and highlight technological innovations or areas in which novel techniques might be particularly fruitful in continuing to advance the field of skeletal regenerative medicine.


Subject(s)
Bone Diseases/therapy , Bone Regeneration , Mesenchymal Stem Cells/physiology , Stromal Cells/physiology , Animals , Bone Diseases, Metabolic/therapy , Clinical Trials as Topic , Humans , Wound Healing
10.
PLoS One ; 9(9): e107199, 2014.
Article in English | MEDLINE | ID: mdl-25248109

ABSTRACT

The innate immune response following bone injury plays an important role in promoting cellular recruitment, revascularization, and other repair mechanisms. Tumor necrosis factor-α (TNF) is a prominent pro-inflammatory cytokine in this cascade, and has been previously shown to improve bone formation and angiogenesis in a dose- and timing-dependent manner. This ability to positively impact both osteogenesis and vascular growth may benefit bone tissue engineering, as vasculature is essential to maintaining cell viability in large grafts after implantation. Here, we investigated the effects of exogenous TNF on the induction of adipose-derived stem/stromal cells (ASCs) to engineer pre-vascularized osteogenic tissue in vitro with respect to dose, timing, and co-stimulation with other inflammatory mediators. We found that acute (2-day), low-dose exposure to TNF promoted vascularization, whereas higher doses and continuous exposure inhibited vascular growth. Co-stimulation with platelet-derived growth factor (PDGF), another key factor released following bone injury, increased vascular network formation synergistically with TNF. ASC-seeded grafts were then cultured within polycaprolactone-fibrin composite scaffolds and implanted in nude rats for 2 weeks, resulting in further tissue maturation and increased angiogenic ingrowth in TNF-treated grafts. VEGF-A expression levels were significantly higher in TNF-treated grafts immediately prior to implantation, indicating a long-term pro-angiogenic effect. These findings demonstrate that TNF has the potential to promote vasculogenesis in engineered osteogenic grafts both in vitro and in vivo. Thus, modulation and/or recapitulation of the immune response following bone injury may be a beneficial strategy for bone tissue engineering.


Subject(s)
Osteogenesis/drug effects , Stem Cells/drug effects , Stromal Cells/drug effects , Subcutaneous Fat/cytology , Tissue Engineering/methods , Tumor Necrosis Factor-alpha/pharmacology , Animals , Bone Transplantation/methods , Cell- and Tissue-Based Therapy/methods , Cells, Cultured , Female , Humans , Male , Neovascularization, Physiologic/drug effects , Rats , Rats, Nude , Stem Cell Transplantation/methods , Stem Cells/cytology , Subcutaneous Fat/drug effects , Tissue Scaffolds
11.
J Biomed Mater Res A ; 102(12): 4317-25, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24510413

ABSTRACT

The treatment of large craniomaxillofacial bone defects is clinically challenging due to the limited availability of transplantable autologous bone grafts and the complex geometry of the bones. The ability to regenerate new bone tissues that faithfully replicate the anatomy would revolutionize treatment options. Advances in the field of bone tissue engineering over the past few decades offer promising new treatment alternatives using biocompatible scaffold materials and autologous cells. This approach combined with recent advances in three-dimensional (3D) printing technologies may soon allow the generation of large, bioartificial bone grafts with custom, patient-specific architecture. In this study, we use a custom-built 3D printer to develop anatomically shaped polycaprolactone (PCL) scaffolds with varying internal porosities. These scaffolds are assessed for their ability to support induction of human adipose-derived stem cells (hASCs) to form vasculature and bone, two essential components of functional bone tissue. The development of functional tissues is assessed in vitro and in vivo. Finally, we demonstrate the ability to print large mandibular and maxillary bone scaffolds that replicate fine details extracted from patient's computed tomography scans. The findings of this study illustrate the capabilities and potential of 3D printed scaffolds to be used for engineering autologous, anatomically shaped, vascularized bone grafts.


Subject(s)
Bone Substitutes/chemistry , Printing, Three-Dimensional , Stem Cells/metabolism , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Adipose Tissue/cytology , Cells, Cultured , Humans , Maxillofacial Abnormalities/pathology , Maxillofacial Abnormalities/therapy , Stem Cells/cytology
12.
Cells Tissues Organs ; 198(2): 87-98, 2013.
Article in English | MEDLINE | ID: mdl-24021248

ABSTRACT

The translation of tissue engineering approaches to the clinic has been hampered by the inability to find suitable multipotent cell sources requiring minimal in vitro expansion. Enhanced bone marrow (eBM), which is obtained by reaming long bone medullary canals and isolating the solid marrow putty, has large quantities of stem cells and demonstrates significant potential to regenerate bone tissues. eBM, however, cannot impart immediate load-bearing mechanical integrity or maintain the gross anatomical structure to guide bone healing. Yet, its putty-like consistency creates a challenge for obtaining the uniform seeding necessary to effectively combine it with porous scaffolds. In this study, we examined the potential for combining eBM with mechanically strong, osteoinductive trabecular bone scaffolds for bone regeneration by creating channels into scaffolds for seeding the eBM. eBM was extracted from the femurs of adult Yorkshire pigs using a Synthes reamer-irrigator-aspirator device, analyzed histologically, and digested to extract cells and characterize their differentiation potential. To evaluate bone tissue formation, eBM was seeded into the channels in collagen-coated or noncoated scaffolds, cultured in osteogenic conditions for 4 weeks, harvested and assessed for tissue distribution and bone formation. Our data demonstrates that eBM is a heterogenous tissue containing multipotent cell populations. Furthermore, coating scaffolds with a collagen hydrogel significantly enhanced cellular migration, promoted uniform tissue development and increased bone mineral deposition. These findings suggest the potential for generating customized autologous bone grafts for treating critical-sized bone defects by combining a readily available eBM cell source with decellularized trabecular bone scaffolds.


Subject(s)
Bone Marrow/physiology , Bone Transplantation , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Bone Marrow/surgery , Bone and Bones/cytology , Bone and Bones/diagnostic imaging , Cattle , Cell Differentiation , Cell Lineage , Cell Movement , Cell Survival , Osteogenesis , Rats , Sus scrofa , X-Ray Microtomography
13.
J Biomed Mater Res A ; 101(12): 3592-8, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23744789

ABSTRACT

There has been great interest in use of mesenchymal stem cell (MSC)-based therapies for cartilage repair. Most recently, treatments involving intra-articular injection of MSCs have shown great promise for cartilage repair and arthritis therapy, which rely on MSC adhesion to cartilage. While there is some information on chondrocyte adhesion to cartilage, there is relatively little known about the kinetics and strength of MSC adhesion to cartilage. The goals of this study were as follows: (1) to quantify the kinetics and strength of adhesion of marrow-derived MSCs to articular cartilage using standard laboratory hardware; (2) to compare this adhesion behavior to that of articular chondrocytes; and (3) to assess the effect of serial monolayer culture on MSC adhesion. First through fourth passage MSCs and primary articular chondrocytes were allowed to adhere to the articular surface of cartilage disks for up to 30 h and the number of adhered cells was recorded to quantify adhesion kinetics. After 30 h, adherent cells were subjected to centrifugal shear to determine adhesion strength, quantified as the shear necessary to detach half the adhered cells (σ50 ). The number of adhered MSCs and adhesion strength increased with passage number and MSCs adhered more strongly than did primary articular chondrocytes. As such, the kinetics and strength of MSC adhesion to cartilage is not dramatically lower than that for articular chondrocytes. This protocol for assessing cell adhesion to cartilage is simple to implement and may represent an important screening tool for assessing the efficacy of cell-based therapies for cartilage repair.


Subject(s)
Cartilage, Articular/cytology , Mesenchymal Stem Cells/cytology , Animals , Cattle , Cell Adhesion , Cells, Cultured , Chondrocytes/cytology , Horses , Kinetics , Knee Joint/cytology , Microscopy, Fluorescence
14.
Stem Cell Res Ther ; 4(1): 10, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23369796

ABSTRACT

Bone is a load-bearing tissue and physical forces play key roles in the development and maintenance of its structure. Mechanical cues can stimulate the expression of an osteogenic phenotype, enhance matrix and mineral deposition, and influence tissue organization to improve the functional outcome of engineered bone grafts. In recent years, a number of studies have investigated the effects of biophysical forces on the bone formation properties of osteoprogenitor cells. The application of physiologically relevant stimuli to tissue-engineered bone may be determined through observation and understanding of forces to which osteoblasts, osteoclasts, and osteocytes are exposed in native bone. Subsequently, these cues may be parameterized and their effects studied in well-defined in vitro systems. The osteo-inductive effects of three specific mechanical cues - shear stress, substrate rigidity, and nanotopography - on cells cultured in monolayer or in three-dimensional biomaterial scaffolds in vitro are reviewed. Additionally, we address the time-dependent effects of mechanical cues on vascular infiltration and de novo bone formation in acellular scaffolds implanted into load-bearing sites in vivo. Recent studies employing cutting-edge advances in biomaterial fabrication and bioreactor design have provided key insights into the role of mechanical cues on cellular fate and tissue properties of engineered bone grafts. By providing mechanistic understanding, future studies may go beyond empirical approaches to rational design of engineering systems to control tissue development.


Subject(s)
Bone and Bones/physiology , Osteogenesis/physiology , Stress, Mechanical , Tissue Engineering/methods , Animals , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Bioreactors , Bone and Bones/drug effects , Humans , Osteogenesis/drug effects
15.
Biomaterials ; 33(32): 8142-51, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22871421

ABSTRACT

Enhancing human mesenchymal stem cell (hMSC) differentiation via RNA interference (RNAi) could provide an effective way of controlling cell fate for tissue engineering, but a safe and effective delivery vehicle must first be developed. Here, we evaluated an array of synthetic end-modified poly(beta-amino ester) (PBAE)-based nanoparticles to optimize siRNA delivery into hMSCs. In general, cystamine-terminated polymers caused the most knockdown, with the best polymer achieving 91% knockdown 20 days post-transfection. Binding studies revealed that the cystamine-terminated polymer bound siRNA tightly at lower weight ratios of polymer to siRNA but then efficiently released siRNA upon exposure to a reducing environment, suggesting that this class of PBAEs can form tight initial interactions with its cargo and then cause efficient, environmentally-triggered release in the cytoplasm. Finally, we tested a functional application of this system by transfecting hMSCs with siRNA against an inhibitor of osteogenesis, B-cell lymphoma (Bcl)-like protein 2 (BCL2L2). This resulted in enhanced osteogenesis over 4 weeks as evidenced by Alizarin Red S staining and calcium quantification. The bioreducible PBAE/siRNA nanoparticles developed here can provide a means of safe and effective control of hMSC differentiation for a wide variety of applications.


Subject(s)
Cystamine/analogs & derivatives , Mesenchymal Stem Cells/cytology , Osteogenesis , Polymers/chemistry , RNA, Small Interfering/administration & dosage , Transfection , Apoptosis Regulatory Proteins/genetics , Cell Differentiation , Cell Line , Humans , Mesenchymal Stem Cells/metabolism , Nanoparticles/chemistry , RNA Interference , RNA, Small Interfering/genetics , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...