Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 22(45): 16258-16270, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27678384

ABSTRACT

A series of luminescent bis-cyclometalated gold(III) complexes containing bridging alkynyl ligands of different natures has been synthesised and characterised. The photophysical properties of the complexes have been investigated through electronic absorption spectroscopy and emission studies. The vibronic emission bands are found to originate from the triplet intraligand (IL) π-π* excited states of the bis-cyclometalating ligands with some mixing of 3 IL π-π* character of the alkynyl ligands. The electrochemical study of a nonsymmetric dinuclear complex shows two successive reduction processes originating from the reductions of the two different cyclometalating ligands. The complexes are found to undergo supramolecular self-assembly processes driven by π-π stacking and hydrophobic/hydrophilic interactions to give honeycomb nanostructures, as revealed from the SEM images. Solvent-dependent morphological transformations have also been observed, which have been studied by SEM and 1 H NMR spectroscopy.


Subject(s)
Gold/chemistry , Solvents/chemistry , Electrochemistry , Ligands , Luminescence , Models, Molecular , Molecular Structure
2.
J Am Chem Soc ; 129(14): 4350-65, 2007 Apr 11.
Article in English | MEDLINE | ID: mdl-17362007

ABSTRACT

A new class of luminescent cyclometalated alkynylgold(III) complexes, [Au(RC=N(R')=CR)(CCR' ')], i.e., [Au(C=N=C)(C triple bond CR'')] (HC=N=CH = 2,6-diphenylpyridine) R' ' = C6H5 1, C6H4-Cl-p 2, C6H4-NO2-p 3, C6H4-OCH3-p 4, C6H4-NH2-p 5, C6H4-C6H13-p 6, C6H13 7, [Au(tBuC=N=CtBu)(C triple bond CC6H5)] 8 (HtBuC=N=CtBuH = 2,6-bis(4-tert-butylphenyl)pyridine), and [Au(C=NTol=C)(CCC6H4-C6H13-p)] 9 (HC=NTol=CH = 2,6-diphenyl-4-p-tolylpyridine), have been synthesized and characterized. The X-ray crystal structures of most of the complexes have also been determined. Electrochemical studies show that, in general, the first oxidation wave is an alkynyl ligand-centered oxidation, while the first reduction couple is ascribed to a ligand-centered reduction of the cyclometalated ligand with the exception of 3 in which the first reduction couple is assigned as an alkynyl ligand-centered reduction. Their electronic absorption and luminescence behaviors have also been investigated. In dichloromethane solution at room temperature, the low-energy absorption bands are assigned as the pi-pi* intraligand (IL) transition of the cyclometalated RC=N(R')=CR ligand with some mixing of a [pi(C triple bond CR'') --> pi*(RC=N(R')=CR)] ligand-to-ligand charge transfer (LLCT) character. The low-energy emission bands of all the complexes, with the exception of 5, are ascribed to origins mainly derived from the pi-pi* IL transition of the cyclometalated RC=N(R')=CR ligand. In the case of 5 that contains an electron-rich amino substituent on the alkynyl ligand, the low-energy emission band was found to show an obvious shift to the red. A change in the origin of emission is evident, and the emission of 5 is tentatively ascribed to a [pi(CCC6H4NH2) --> pi*(C=N=C)] LLCT excited-state origin. DFT and TDDFT computational studies have been performed to verify and elucidate the results of the electrochemical and photophysical studies.

3.
Chem Commun (Camb) ; (23): 2906-8, 2005 Jun 21.
Article in English | MEDLINE | ID: mdl-15957021

ABSTRACT

A novel class of luminescent cyclometalated gold(III) alkynyl complexes has been demonstrated to possess EL properties and has been employed in the roles of electrophosphorescent emitters or dopants of organic light-emitting diodes (OLEDs) with high brightness and efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...